Skip to main content
Log in

The Micro-Deformation Monitoring Based on the All-Fiber-Optic Sensor in Taiji Program

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

To reach the requirement of the high precision displacement measurement in Taiji program, it is necessary to reject the optical path noises caused by the structure deformation. Different from the spatial optical path establishment, we present a methodology to monitor the micro-deformation based on the all-fiber-optic sensor, which can be pasted to the surface of the target components. In this paper, the all-fiber-optic sensor is applied to reflect the deformation of the cantilever beam as an example. The experimental results reveal that the sensing scheme adequately aligns with the theoretical predictions with the acceptable tolerance for error, and the deformation measurement error of the sensor is reduced from 240 nm to 17.2 nm through the noise suppression scheme. It validates the feasibility of the contact and the high precision micro-deformation measurement and turns out to be a promising candidate to monitor the surface micro-deformation of the target components, such as the optical platform, the telescope framework and the satellite structure in the future Taiji program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Barranco, G.F., Gerberding, O., Schwarze, T.S., Sheard, B.S., Heinzel, G., Dahl, C., Zender, B., Heinzel, G.: Phase stability of photoreceivers in intersatellite laser interferometers. Opt. Express 25, 7999–8010 (2017)

    Article  Google Scholar 

  • Barranco, G.F., Sheard, B.S., Dahl, C., Mathis, W., Heinzel, G.: A low-power, low-noise 37-MHz photoreceiver for intersatellite laser interferometers using discrete heterojunction bipolar transistors. IEEE Sens. J. 18, 7414 (2018)

    Article  Google Scholar 

  • BoIler, C., Chang, F.K., Fujino, Y.: Encyclopedia of structural health monitoring. John Wiley & Sons, Ltd (2009)

    Book  Google Scholar 

  • Butter, C.D., Hocker, G.B.: Fiber optics strain gauge. Appl. Opt. 17, 2867–2869 (1978)

    Article  Google Scholar 

  • Esteban Delgado, J.J.: Laser ranging and data communication for the laser interferomter space antenna, Ph.D. thesis (Gottfried Wilhelm Leibniz Universität Hannover, 2012)

  • Gerberding, O., Diekmann, C., Kullmann, J., Tröbs, M., Bykov, I., Barke, S., Brause, N.C., Delgado, J.J.E., Schwarze, T.S., Reiche, J., Danzmann, K., Rasmussen, T., Hansen, T.V., Enggaard, A., Pedersen, S.M., Jennrich, O., Suess, M., Sodnik, Z., Heinzel, G.: Readout for intersatellite laser interferometry: Measuring low frequency phase fluctuations of high-frequency signals with microradian precision. Rev. Sci. Instrum. 86, 074501 (2015)

  • Gerberding, O., Sheard, B., Bykov, I., Kullmann, J., Delgado, J.J.E., Danzmann, K., Heinzel, G.: Phasemeter core for intersatellite laser heterodyne interferometry: modelling, simulations and experiments. Class. Quantum Gravity 30, 235029 (2013)

  • Hechenblaikner, G.: Common mode noise rejection properties of amplitude and phase noise in a heterodyne interferometer. J. Opt. Soc. Am. 30, 941–947 (2013)

    Article  Google Scholar 

  • Hu, W.R., Wu, Y.L.: The Taiji Program in Space for gravitational wave physics and the nature of gravity. Natl. Sci. Rev. 4, 685 (2017)

    Article  Google Scholar 

  • Hu, W.R., Kang, Q.: Frontiers of microgravity science. Sci. Tech. Rev. 38, 59–62 (2020)

    Google Scholar 

  • Liu, H.S., Luo, Z.R.: In-orbit performance of the laser interferometer of Taiji-1 experimental satellite. Int. J. Mod. Phys. A 36, 2140004 (2021)

    Article  Google Scholar 

  • Liu, H.S., Luo, Z.R., Jin, G.: The Development of Phasemeter for Taiji Space Gravitational Wave Detection. Microgravity Sci. Technol. 30, 775 (2018)

    Article  Google Scholar 

  • Liu, H.S., Yu, T., Luo, Z.R.: A low-noise analog frontend design for the Taiji phasemeter prototype. Rev. Sci. Instrum. 92, 054501 (2021)

  • Liu, F., Xie, S.R., Qiu, X.K., Wang, X.F., Cao, S., Qin, M.Z., He, X.G., Xie, B., Zheng, X.P., Zhang, M.: Efficient common-mode noise suppression for fiber-optic interferometric sensor using heterodyne demodulation. J. Lightwave Technol. 34, 5453–5461 (2016)

    Article  Google Scholar 

  • Luo, Z.R., et al.: The recent development of interferometer prototype for Chinese gravitational wave detection pathfinder mission. Opt. Laser Technol. 105, 146 (2018)

    Article  Google Scholar 

  • Malki, A., Lecoy, P., Marty, J., Renouf, C., Ferdinand, P.: Optical fiber accelerometer based on a silicon micromachined cantilever. Appl. Opt. 34, 8014–8 (1995)

    Article  Google Scholar 

  • Peng, F., Yang, J., Wu, B., Yuan, Y.G., Li, X.L., Zhou, A., Yuan, L.B.: Compact fiber optic accelerometer. Chin. Opt. Lett. 10, 011201 (2012)

  • Sun, S.Y., Liu, Y., Mohamed, A.: Sharaf Eldean, Design and implementation of an optical fiber sensing based vibration monitoring system. J Vibroengineering 23, 496 (2021)

    Article  Google Scholar 

  • Sun, J.X., Yang, J., Liu, Z.H., Yuan, L.B.: Laser interferometer used for nanometer vibration measurements. Proc. SPIE 6595 (2007)

  • Steier, F.: Interferometry techniques for spaceborne gravitational wave detectors, Ph.D. thesis (Gottfried Wilhelm Leibniz Universität Hannover, 2008)

  • Tröbs, M., d’Arcio, L., Barke, S., et al.: Testing the LISA optical bench (2013)

  • Vallée, R., Drolet, D.: Practical coupling device based on a two-core optical fiber. Appl. Opt. 33, 5602–5610 (1994)

    Article  Google Scholar 

  • Wang, A., Miller, M.S., Plante, A.J., Gunther, M.F., Murphy, K.A., Claus, R.O.: Split-spectrum intensity-based optical fiber sensors for measurement of microdisplacement, strain, and pressure. Appl. Opt. 35, 2595–601 (1996)

    Article  Google Scholar 

  • Wu, C.M., Lin, S.T., Fu, J.: Heterodyne interferometer with two spatial-separated polarization beams for nanometrology. Opt. Quant. Electron. 34, 1267–1276 (2002)

    Article  Google Scholar 

  • Yuan, L.B., Yang, J., Liu, Z.H., Sun, J.X.: In-fiber integrated Michelson interferometer. Opt. Lett. 31, 2692–2694 (2006)

    Article  Google Scholar 

  • Yuan, L.B., Liu, Z.H., Yang, J.: Coupling characteristics between single-core fiber and multicore fiber. Opt. Lett. 31, 3237–3239 (2006)

    Article  Google Scholar 

  • Yuan, L.B., Yang, J., Liu, Z.H.: A compact fiber-optic flow velocity sensor based on a twin-core fiber Michelson interferometer. Sensors Journal, IEEE 8, 1114–1117 (2008)

    Article  Google Scholar 

  • Yi, D., He, X.G., Liu, F., Gu, L.J., Zhang, M., Qiu, X.K., Ye, H.: Self-suppression of common-mode noises of the different fiber optic interferometric accelerometers. Opt. Express 26, 15384–15397 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Grant No. 2020YFC2200104) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA1502110102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziren Luo.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

TC: Pioneer WR Hu - Research Pioneer and Leader of Microgravity Science in China: Dedicated to the 85th Birthday of Academician Wen-Rui Hu

Guest Editors: Jian-Fu Zhao, Kai Li

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Liu, H., Zhao, Y. et al. The Micro-Deformation Monitoring Based on the All-Fiber-Optic Sensor in Taiji Program. Microgravity Sci. Technol. 34, 61 (2022). https://doi.org/10.1007/s12217-022-09989-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12217-022-09989-6

Keywords

Navigation