Skip to main content
Log in

Investigation of Generation and Dynamics of Microbubbles in the Solutions of Anionic Surfactant (SDS)

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

The paper demonstrates the possibility of air microbubble formation in aqueous solutions of SDS anionic surfactant, with particular emphasis on the use of a microporous asymmetric wettability membrane, an air compressor, and a water pump. An experimental setup and specialized software in the Python programming language have been developed. The results of experimental and numerical studies are presented in the form of histograms of the diameter distribution of bubbles. The method of static image analysis was used to measure the size of the generated bubbles. It is shown that as the concentration of SDS increases from 0 to 3.5 mmol, the average diameter of the bubbles decreases from 135 µm to 90 µm which is accompanied by a simultaneous increase of their concentration. A further increase in the SDS concentration above 3.5 mmol causes clouding of the solution due to a decrease in the diameter of the bubbles, which becomes less than 32 µm and the formation of an opalescent suspension of water-insoluble microparticles. An attempt has been made to estimate the size of bubbles and particles in such solutions using the Dynamic Light Scattering (DLS) technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahmadi, R., Khodadadi, D.A., Abdollahy, M., Fan, M.: Nano- microbubble flotation of fine and ultrafine chalcopyrite particles. Inter- National Journal of Mining Science and Technology 24(4), 559–566 (2014)

    Article  Google Scholar 

  • Amani, P., Karakashev, S.I., Grozev, N.A., Simeonova, S.S., Miller, R., Rudolph, V., Firouzi, M.: Effect of selected monovalent salts on surfactant stabilized foams. Adv. Coll. Interface. Sci. 295, 102490 (2021)

    Article  Google Scholar 

  • Avdeev, A.A.: Bubble rise in the gravity field. In: Bubble Systems, pp. 329–369. Springer, Switzerland (2016)

  • Bitlloch, P., Ruiz, X., Ramirez-Piscina, L., Casademunt, J.: Generation and control of monodisperse bubble suspensions in microgravity. Aerosp. Sci. Technol. 77, 344–352 (2018)

    Article  Google Scholar 

  • Brun, M., Delample, M., Harte, E., Lecomte, S., Leal-Calderon, F.: Stabilization of air bubbles in oil by surfactant crystals: A route to pro- duce air-in-oil foams and air-in-oil-in-water emulsions. Food Res. Int. 67, 366–375 (2015)

    Article  Google Scholar 

  • Deng, B., Schroën, K., de Ruiter, J.: Effects of dynamic adsorption on bubble formation and coalescence in partitioned-edge devices. J. Colloid Interface Sci. 602, 316–324 (2021)

    Article  Google Scholar 

  • Farrokhpay, S., Filippova, I., Filippov, L., Picarra, A., Rulyov, N., Fornasiero, D.: Flotation of fine particles in the presence of combined microbubbles and conventional bubbles. Miner. Eng. 155, 106439 (2020)

    Article  Google Scholar 

  • Fattalov, O., Lyubimova, T., Rybkin, K., Kuchinskiy, M.: Experimental study of the processes of formation, drift and levitation of vapor–gas bubbles in water containing surfactant under the action of ultrasound. Microgravity Sci. Technol. 33(2), 1–7 (2021)

    Article  Google Scholar 

  • Gilmour, D., Zimmerman, W.: Microbubble intensification of bioprocessing. Adv. Microb. Physiol. 77, 1–35 (2020)

    Article  Google Scholar 

  • Guo, J., Chen, S., Lan, J., Wang, Z., Sha, Y.: Investigation on solutal marangoni convection around a bubble under different gravities. Microgravity Sci. Technol. 32(5), 857–871 (2020)

    Article  Google Scholar 

  • Hooshanginejad, A., Baskota, A., Jung, S.: A backflipping motion of a bubble impacting tilted surfaces. Bull. Am. Phys Soc. 66, (2021)

  • Jiang, N., Yu, X., Sheng, Y., Zong, R., Li, C., Lu, S.: Role of salts in performance of foam stabilized with sodium dodecyl sulfate. Chem. Eng. Sci. 216, 115474 (2020)

    Article  Google Scholar 

  • John, A., Brookes, A., Carra, I., Jefferson, B., Jarvis, P.: Microbubbles and their application to ozonation in water treatment: A critical review exploring their benefit and future application. Crit. Rev. Environ. Sci. Technol. 52(9), 1561–1603 (2022)

    Article  Google Scholar 

  • Kanagawa, T., Ayukai, T., Maeda, T., Yatabe, T.: Effect of drag force and translation of bubbles on nonlinear pressure waves with a short wavelength in bubbly flows. Phys. Fluids 33(5), 053314 (2021)

    Article  Google Scholar 

  • Kawaji, M., Lyubimov, D., Ichikawa, N., Lyubimova, T., Kariyasaki, A., Tryggvason, B.: The effects of forced vibration on the motion of a large bubble under microgravity. Microgravity Sci. Technol. 33(5), 1–18 (2021)

    Article  Google Scholar 

  • Kim, H., Koo, B., Lee, S., Yoon, J.Y.: Experimental study of cavitation intensity using a novel hydrodynamic cavitation reactor. J. Mech. Sci. Technol. 33(9), 4303–4310 (2019)

    Article  Google Scholar 

  • Li, M., Bussonnière, A., Bronson, M., Xu, Z., Liu, Q.: Study of venturi tube geometry on the hydrodynamic cavitation for the generation of microbubbles. Miner. Eng. 132, 268–274 (2019)

    Article  Google Scholar 

  • Liu, B., Manica, R., Liu, Q., Klaseboer, E., Xu, Z.: Coalescence or bounce? how surfactant adsorption in milliseconds affects bubble collision. The Journal of Physical Chemistry Letters 10(18), 5662–5666 (2019)

    Article  Google Scholar 

  • Lungu, M., Wang, H., Wang, J., Yang, Y., Chen, F.: Two-fluid model simulations of the national energy technology laboratory bubbling fluidized bed challenge problem. Ind. Eng. Chem. Res. 55(17), 5063–5077 (2016)

    Article  Google Scholar 

  • Luo, J., Xu, W., Khoo, B.C.: Stratification effect of air bubble on the shock wave from the collapse of cavitation bubble. J. Fluid Mechan. 919, (2021)

  • Lyubimova, T., Rybkin, K., Fattalov, O., Kuchinskiy, M., Filippov, L.: Experimental study of temporal dynamics of cavitation bubbles selectively attached to the solid surfaces of different hydrophobicity under the action of ultrasound. Ultrasonics 117, 106516 (2021)

    Article  Google Scholar 

  • Majeed, T., Solling, T.I., Kamal, M.S.: Foamstability: The interplay between salt-, surfactant-and critical micelle concentration. J. Petrol. Sci. Eng. 187, 106871 (2020)

    Article  Google Scholar 

  • Maria, I.D.S., Lim, M.W., Von Lau, E.: Multiple roles of graphene nanoparticles (gnp) in microbubble flotation for crude oil recovery from sand. Results in Engineering 11, 100271 (2021)

    Article  Google Scholar 

  • Oliveira, H., Azevedo, A., Rubio, J.: Nanobubbles generation in a high- rate hydrodynamic cavitation tube. Miner. Eng. 116, 32–34 (2018)

    Article  Google Scholar 

  • Parkinson, L., Sedev, R., Fornasiero, D., Ralston, J.: The terminal rise velocity of 10–100 µm diameter bubbles in water. J. Colloid Interface Sci. 322(1), 168–172 (2008)

    Article  Google Scholar 

  • Pawliszak, P., Ulaganathan, V., Bradshaw-Hajek, B.H., Manica, R., Beat- tie, D.A., Krasowska, M.: Mobile or immobile? rise velocity of air bubbles in high-purity water. J. Phys. Chem. C. 123(24), 15131–15138 (2019)

  • Pio, D., Tarelho, L., Tavares, A., Matos, M., Silva, V.: Co-gasification of refused derived fuel and biomass in a pilot-scale bubbling fluidized bed reactor. Energy Convers. Manage. 206, 112476 (2020)

    Article  Google Scholar 

  • Rajan, V.K., Chandramouli, V., Seshadri, S., Muniyandi, V.: Electro- hydrodynamic effects on single bubble growth and departure under microgravity conditions: a numerical investigation. Microgravity Sci. Technol. 31(6), 805–819 (2019)

    Article  Google Scholar 

  • Ruiz-Morales, Y., Romero-Martínez, A.: Coarse-grain molecular dynamics simulations to investigate the bulk viscosity and critical micelle concentration of the ionic surfactant sodium dodecyl sulfate (sds) in aqueous solution. J. Phys. Chem. B 122(14), 3931–3943 (2018)

    Article  Google Scholar 

  • Rybkin, K., Bratukhin, Y.K., Lyubimova, T., Fatallov, O., Filippov, L.: Experimental study of formation and dynamics of cavitation bubbles and acoustic flows in nacl, kcl water solutions. In: J. Phys.: Confer. Series. 879, 012026 (2017)

  • Shi, J., Ma, Q., Chen, Z.: Numerical study on bubble motion in pore structure under microgravity using the lattice Boltzmann method. Microgravity Sci. Technol. 31(2), 207–222 (2019)

    Article  Google Scholar 

  • Sirikulchaikij, S., Nooklay, B., Kokoo, R., Khangkhamano, M.: Rubber foam processing via bubbling technique. In: Mater. Sci. Forum. 962, 96–100 (2019). Trans Tech Publ

  • Sun, X., You, W., Xuan, X., Ji, L., Xu, X., Wang, G., Zhao, S., Boczkaj, G., Yoon, J.Y., Chen, S.: Effect of the cavitation generation unit structure on the performance of an advanced hydrodynamic cavitation reactor for process intensifications. Chem. Eng. J. 412, 128600 (2021)

    Article  Google Scholar 

  • Suñol, F., Ochoa, D., Granados, M., González-Cinca, R., García, J.: Performance assessment of ultrasonic waves for bubble control in cryogenic fuel tanks. Microgravity Sci. Technol. 32(4), 609–613 (2020)

    Article  Google Scholar 

  • Tang, J., Zhang, Y., Yao, Y., Dai, N., Ge, Z., Wu, D.: High-performance ultrafine bubble aeration on janus aluminum foil prepared by laser microfabrication. Langmuir 37(23), 6947–6952 (2021)

    Article  Google Scholar 

  • Tao, X., Liu, Y., Jiang, H., Chen, R.: Microbubble generation with shear flow on large-area membrane for fine particle flotation. Chemical Engineering and Processing-Process Intensification 145, 107671 (2019)

    Article  Google Scholar 

  • Uchiyama, H., Ide, M., Kariyasaki, A., Matsukuma, Y.: Gas absorption from a row of co2 bubbles in tap water under controlled bubble generation. J. Chem. Eng. Jpn. 55(2), 84–91 (2022)

    Article  Google Scholar 

  • Valadbaigi, P., Ettelaie, R., Murray, B.S.: Generation of ultra- stable microbubbles for industrial applications. PhD thesis, University of Leeds (2019)

  • Wang, H., Yang, W., Yan, X., Wang, L., Wang, Y., Zhang, H.: Regulation of bubble size in flotation: A review. J. Environ. Chem. Eng. 8(5), 104070 (2020)

    Article  Google Scholar 

  • Wei, P., Ren, L., Zhang, Y., Bao, S.: Influence of microbubble on fine wolframite flotation. Minerals 11(10), 1079 (2021)

    Article  Google Scholar 

  • Wang, Q., Yao, W., Quan, X., Cheng, P.: Validation of a dynamic model for vapor bubble growth and collapse under microgravity conditions. Int. Commun. Heat Mass Transfer 95, 63–73 (2018)

    Article  Google Scholar 

  • Wu, M., Gharib, M.: Experimental studies on the shape and path of small air bubbles rising in clean water. Phys. Fluids 14(7), 49–52 (2002)

    Article  Google Scholar 

  • Yang, H.-C., Hou, J., Wan, L.-S., Chen, V., Xu, Z.-K.: Janus membranes with asymmetric wettability for fine bubble aeration. Adv. Mater. Interfaces 3(9), 1500774 (2016)

    Article  Google Scholar 

  • Yasui, K.: Acoustic Cavitation and Bubble Dynamics. Springer, Australia (2018)

    Book  Google Scholar 

  • Zhu, S., Li, J., Cai, S., Bian, Y., Chen, C., Xu, B., Su, Y., Hu, Y., Wu, D., Chu, J.: Unidirectional transport and effective collection of underwater co2 bubbles utilizing ultrafast-laser-ablated janus foam. ACS Appl. Mater. Interfaces. 12(15), 18110–18115 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation under grant 20-69-46066. The authors thank A.I. Nechaev and L.G. Chekanova (ITH Ural Branch of the Russian Academy of Sciences) for assisting in the study of the size of emerging microbubbles by the method Dynamic Light Scattering (DLS).

Funding

This work was supported by the Russian Science Foundation under grant 20–69-46066.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by T. Lyubimova, K. Rybkin, O. Fattalov, M. Kuchinskiy and M. Kozlov. All authors read and approved the final manuscript.

Corresponding author

Correspondence to T. Lyubimova.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Non-equil Processes in Fluids: The Effect of Gravity on Non-Equilibrium Processes in Fluids

Guest Editors: Tatyana Lyubimova, Valentina Shevtsova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyubimova, T., Rybkin, K., Fattalov, O. et al. Investigation of Generation and Dynamics of Microbubbles in the Solutions of Anionic Surfactant (SDS). Microgravity Sci. Technol. 34, 74 (2022). https://doi.org/10.1007/s12217-022-09977-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12217-022-09977-w

Keywords

Navigation