Alhendal, Y., Turan, A., Kalendar, A., Abou-Ziyan, H., El-shiaty, R.: Thermocapillary bubble migration at high Reynolds and Marangoni numbers: 3D numerical study. Microgravity Sci. Technol. 30, 561–569 (2018)
Article
Google Scholar
Alméras, E., Risso, F., Roig, V., Cazin, S., Plais, C., Augier, F.: Mixing by bubble-induced turbulence. J. Fluid Mech. 776, 458–474 (2015). https://doi.org/10.1017/jfm.2015.338
Article
Google Scholar
Balasubramaniam, R., Chai, A.-T.: Thermocapillary migration of droplets: An exact solution for small marangoni numbers. J. Colloid Interf. Sci. 119, 531–538 (1987). https://doi.org/10.1016/0021-9797(87)90300-6
Article
Google Scholar
Balasubramaniam, R., Lavery, J.E.: Numerical simulation of thermocapillary bubble migration under microgravity for large reynolds and marangoni numbers. Numer. Heat Tr. A-Appl. 16, 175–187 (1989). https://doi.org/10.1080/10407788908944712
Article
Google Scholar
Chen, J.C., Lee, Y.T.: Effect of surface deformation on thermocapillary bubble migration. AIAA J. 30, 993–998 (1992). https://doi.org/10.2514/3.11019
Article
Google Scholar
Feng, H., Zheng, T., Li, M., Wu, J., Ji, H., Zhang, J., Zhao, W., Guo, J.: Droplet-based microfluidics systems in biomedical applications. Electrophoresis 40, 1580–1590 (2019). https://doi.org/10.1002/elps.201900047
Article
Google Scholar
Gao, J.-H., Wu, Z.-B.: Steady thermocapillary droplet migration under thermal radiation with a uniform flux. Microgravity Sci. Technol. 33, 5 (2021). https://doi.org/10.1007/s12217-020-09857-1
Article
Google Scholar
Haj-Hariri, H., Shi, Q., Borhan, A.: Thermocapillary motion of deformable drops at finite Reynolds and Marangoni numbers. Phys. Fluids. 9, 845–855 (1997). https://doi.org/10.1063/1.869182
Article
Google Scholar
Kalendar, A., Alhendal, Y., Turan, A., Abou-Ziyan, H.: Numerical investigation of the effects of high Reynolds and marangoni numbers on thermocapillary droplet migration. Microgravity Sci. Technol. 33, 23 (2021). https://doi.org/10.1007/s12217-021-09874-8
Article
Google Scholar
Kalichetty, S.S., Sundararajan, T., Pattamatta, A.: Thermocapillary migration and interaction dynamics of droplets in a constricted domain. Phys. Fluids. 31, 022106 (2019). https://doi.org/10.1063/1.5084313
Article
Google Scholar
Lajeunesse, E., Homsy, G.M.: Thermocapillary migration of long bubbles in polygonal tubes. II. Experiments. Phys. Fluids. 15, 308–314 (2003). https://doi.org/10.1063/1.1531617
Article
MATH
Google Scholar
Liang, R., Chen, Z.: Dynamics for droplets in normal gravity and microgravity. Microgravity Sci. Technol. 21, 247–254 (2009). https://doi.org/10.1007/s12217-009-9156-2
Article
Google Scholar
López-Aguilar, J.E., Tamaddon-Jahromi, H.R., Webster, M.F., Walters, K.: Numerical vs experimental pressure drops for Boger fluids in sharp-corner contraction flow. Phys. Fluids 28, 103104 (2016). https://doi.org/10.1063/1.4966022
Article
Google Scholar
Lu, M., Lu, J., Zhang, Y., Tryggvason, G.: Numerical study of thermocapillary migration of a bubble in a channel with an obstruction. Phys. Fluids. 31, 062101 (2019). https://doi.org/10.1063/1.5094033
Nas, S., Muradoglu, M., Tryggvason, G.: Pattern formation of drops in thermocapillary migration. Int. J. Heat Mass Transfer. 49, 2265–2276 (2006). https://doi.org/10.1016/j.ijheatmasstransfer.2005.12.009
Article
MATH
Google Scholar
Nas, S., Tryggvason, G.: Thermocapillary interaction of two bubbles or drops. Int. J. Multiphase Flow. 29, 1117–1135 (2003). https://doi.org/10.1016/S0301-9322(03)00084-3
Article
MATH
Google Scholar
Nguyen, H.D., Vu, T.V., Nguyen, P.H., Pham, B.D., Ho, N.X., Nguyen, C.T., Nguyen, V.T.: Numerical study of the indentation formation of a compound droplet in a constriction. J. Mech. Sci. Technol. 35, 1515–1526 (2021a). https://doi.org/10.1007/s12206-021-0316-7
Nguyen, V.T., Vu, T.V., Nguyen, P.H., Ho, N.X., Pham, B.D., Nguyen, H.D., Vu, H.V.: Thermocapillary migration of a fluid compound droplet. J. Mech. Sci. Technol. 35, 4033–4044 (2021b). https://doi.org/10.1007/s12206-021-0816-5
Pfefferkorn, F.E., Duffie, N.A., Li, X., Vadali, M., Ma, C.: Improving surface finish in pulsed laser micro polishing using thermocapillary flow. CIRP Ann. 62, 203–206 (2013). https://doi.org/10.1016/j.cirp.2013.03.112
Article
Google Scholar
Sammarco, T.S., Burns, M.A.: Thermocapillary pumping of discrete drops in microfabricated analysis devices. AIChE J. 45, 350–366 (1999). https://doi.org/10.1002/aic.690450215
Article
Google Scholar
Singla, A., Ray, B.: Effects of surface topography on low Reynolds number droplet/bubble flow through a constricted passage. Phys. Fluids 33, 011301 (2021). https://doi.org/10.1063/5.0031255
Article
Google Scholar
Subramanian, R.S.: Thermocapillary migration of bubbles and droplets. Adv. Space Res. 3, 145–153 (1983). https://doi.org/10.1016/0273-1177(83)90239-9
Article
Google Scholar
Tang, W., Zhu, S., Jiang, D., Zhu, L., Yang, J., Xiang, N.: Channel innovations for inertial microfluidics. Lab Chip. 20, 3485–3502 (2020). https://doi.org/10.1039/D0LC00714E
Article
Google Scholar
Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J., Nas, S., Jan, Y.-J.: A front-tracking method for the computations of multiphase flow. J. Comput. Phys. 169, 708–759 (2001). https://doi.org/10.1006/jcph.2001.6726
MathSciNet
Article
MATH
Google Scholar
Tsai, T.M., Miksis, M.J.: Dynamics of a drop in a constricted capillary tube. J. Fluid Mech. 274, 197–217 (1994). https://doi.org/10.1017/S0022112094002090
MathSciNet
Article
MATH
Google Scholar
Uhlmann, D.R.: Glass Processing in a Microgravity Environment. MRS Online Proc. Libr. 9, 269–278 (1981). https://doi.org/10.1557/PROC-9-269
Article
Google Scholar
Vu, T.V., Bui, D.T., Nguyen, Q.D., Pham, P.H.: Numerical study of rheological behaviors of a compound droplet in a conical nozzle. Int. J. Heat Fluid Flow 85, 108655 (2020). https://doi.org/10.1016/j.ijheatfluidflow.2020.108655
Vu, T.V., Truong, A.V., Hoang, N.T.B., Tran, D.K.: Numerical investigations of solidification around a circular cylinder under forced convection. J. Mech. Sci. Technol. 30, 5019–5028 (2016). https://doi.org/10.1007/s12206-016-1021-9
Article
Google Scholar
Vu, T.-V., Vu, T.V., Nguyen, C.T., Pham, P.H.: Deformation and breakup of a double-core compound droplet in an axisymmetric channel. Int. J. Heat Mass Transfer. 135, 796–810 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.032
Article
Google Scholar
Vu, T.V., Wells, J.C.: Numerical simulations of solidification around two tandemly-arranged circular cylinders under forced convection. Int. J. Multiphase Flow. 89, 331–344 (2017). https://doi.org/10.1016/j.ijmultiphaseflow.2016.11.007
Article
Google Scholar
Wang, Z., Su, H., Chen, Y., Li, Y., Li, S.: Heat transfer and thermocapillary flow of a double-emulsion droplet heated using an infrared laser by the photothermal effect: a numerical study. Microgravity Sci. Technol. 33, 51 (2021). https://doi.org/10.1007/s12217-021-09868-6
Article
Google Scholar
Yin, Z., Gao, P., Hu, W., Chang, L.: Thermocapillary migration of nondeformable drops. Phys. Fluids. 20, 082101 (2008). https://doi.org/10.1063/1.2965549
Article
MATH
Google Scholar
Young, N.O., Goldstein, J.S., Block, M.J.: The motion of bubbles in a vertical temperature gradient. J. Fluid Mech. 6, 350–356 (1959). https://doi.org/10.1017/S0022112059000684
Article
MATH
Google Scholar
Zeng, C., Deng, W., Cardenas, M.B.: Resonance of droplets in constricted capillary tubes: Critical factors and nonlinearity. Phys. Rev. Fluids. 5, 083604 (2020)
Article
Google Scholar
Zhao, J.-F., Li, Z.-D., Li, H.-X., Li, J.: Thermocapillary migration of deformable bubbles at moderate to large Marangoni number in microgravity. Microgravity Sci. Technol. 22, 295–303 (2010)
Article
Google Scholar