Arya, M., Khandekar, S., Pratap, D., Ramakrishna, S.A.: Pool boiling of water on nano-structured micro wires at sub-atmospheric conditions. Heat Mass Transf 52(9), 1725–1737 (2016)
Article
Google Scholar
Asano, H., Akita, K., Fujii, T.: Boiling heat transfer enhancement by spray coating surface (effect of gravity on pool boiling heat transfer). In: Proc. Int. Heat Transf. Conf. 13, 13–18 August, Sydney, Australia (2006)
Bakhru, N., Lienhard, J.H.: Boiling from small cylinders. Int. J. Heat Mass Transf. 15(11), 2011–2025 (1972)
Article
Google Scholar
Bang, I.C., Chang, S.H.: Boiling heat transfer performance and phenomena of Al2O3–water nano-fluids from a plain surface in a pool. Int. J. Heat Mass Trans. 48(12), 2407–2419 (2005)
Article
Google Scholar
Benjamin, R.J., Balakrishnan, A.R.: Nucleate pool boiling heat transfer of pure liquids at low to moderate heat fluxes. Int. J. Heat Mass Transf. 39(12), 2495–2504 (1996)
Article
Google Scholar
Cooper, M.G.: Saturation nucleate pool boiling: a simple correlation. 1st UK National Conf. Heat Transf. Inst. Chem. Eng. 2, 785–793 (1984)
Chopkar, M., Das, A.K., Manna, I., Das, P.K.: Pool boiling heat transfer characteristics of ZrO2–water nanofluids from a flat surface in a pool. Heat Mass Transf. 44(8), 999–1004 (2008)
Article
Google Scholar
Fang, X.D.: Study on saturated water vapor pressure equations for calculation of aircraft air-conditioning systems. J. Aerosp. Power 10(3), 299–300, 316 (1995)
Fang, X.D.: Advanced two-phase flow and heat transfer. Beihang University Press, Beijing (2021)
Google Scholar
Fang, X.D., Zheng, L., He Y., Li, G., Bi. M.H., Yang, B., Wang, X.: Experimental study of pool boiling critical heat flux on thin wires under various gravities. Microgravity Sci. Technol. 31(4), 339–345 (2019)
Fazel, S.A.A., Roumana, S.: Pool boiling heat transfer to pure liquids. In: WSEAS Conference, USA (2010)
Feng, Y., Li, H.X., Zhao, J.F., Guo, K.K., Lei, X.L.: Lattice boltzmann study on influence of gravitational acceleration on pool nucleate boiling heat transfer. Microgravity Sci. Technol. 33, 21 (2021)
Article
Google Scholar
Gorenflo, D.: Pool boiling. VDI Heat Atlas. VDI-Verlag, Düsseldorf (1993)
Google Scholar
Holman, J.P., Gajda, W.J.: Experimental methods for engineers. McGraw–Hill, New York (1989)
Hu, W.R., Zhao, J.F., Long, M., Zhang, X.W., Liu, Q.S., Hou, M.Y., Kang, Q., Wang, Y.R., Xu, S.H., Kong, W.J., Zhang, H., Wang, S.F., Sun, Y.Q., Hang, H.Y., Huang, Y.P., Cai, W.M., Zhao, Y., Dai, J.W., Zheng, H.Q., Duan, E.K., Wang, J.F.: Space program SJ-10 of microgravity research. Microgravity Sci. Technol. 26(3), 159–169 (2014)
Article
Google Scholar
Kang, M.G.: Effect of surface roughness on pool boiling heat transfer. Int. J. Heat Mass Transf. 43(22), 4073–4085 (2000)
Article
Google Scholar
Kim, J., Benton, J.F.: Highly subcooled pool boiling heat transfer at various gravity levels. Int. J. Heat Fluid Flow 23(4), 497–508 (2002)
Article
Google Scholar
Kim, J., Benton, J.F., Wisniewski, D.: Pool boiling heat transfer on small heaters: effect of gravity and subcooling. Int. J. Heat Mass Transf. 45(19), 3919–3932 (2002)
Article
Google Scholar
Kim, J.H., You, S.M., Pak, J.Y.: Effects of heater size and working fluids on nucleate boiling heat transfer. Int. J. Heat Mass Transfer 49(1/2), 122–131 (2006)
Article
Google Scholar
Kirichenko, Y.A., Kozlov, S.M., Levchenko, N.M.: Heat transfer to helium-I during different boiling regimes at high centripetal accelerations. Cryogenics 23(4), 217–219 (1983)
Article
Google Scholar
Kline, S.J., McClintock, F.A.: Describing uncertainties in single-sample experiments. Mech. Eng. 75(1), 3–8 (1953)
Google Scholar
Kruzhilin, G.N.: Free convection transfer of heat from a horizontal plate and boiling liquid. USSR Academy Sci. 58, 1657–1660 (1947)
Google Scholar
Kutateladze, S.S.: Heat transfer and hydrodynamic resistance. Moscow: Handbook Energoatomizdat Publishing House, 357–358 (1990)
Kwark, S.M., Amaya, M., Kumar, R., Moreno, G., You, S.M.: Effects of pressure, orientation, and heater size on pool boiling of water with nanocoated heaters. Int. J. Heat Mass Transfer 53(23–24), 5199–5208 (2010)
Article
Google Scholar
Labuntsov, D.A.: Heat transfer problems with nucleate boiling of liquids. Therm. Eng. 19, 21–28 (1972)
Google Scholar
Lee, W.: A pressure iteration scheme for two-phase modeling, Los Alamos Scientific Laboratory, Technical Report, LA-UR, Los Alamos, New Mexico (1979)
Li, C.H., Li, T., Hodgins, P., Hunter, C.N., Voevodin, A.A., Jones, J.G., Peterson, G.P.: Comparison study of liquid replenishing impacts on critical heat flux and heat transfer coefficient of nucleate pool boiling on multiscale modulated porous structures. Int. J. Heat Mass Transf. 54, 3146–3155 (2011)
Article
Google Scholar
Li, G.H., Fang, X.D., Yuan, Y.L., Chen Y.Y., Wang, L., Xu, Y.:An experimental study of flow boiling frictional pressure drop of R134a in a horizontal 1.002 mm tube under hypergravity. Int. J. Heat Mass Transf. 118, 247–256 (2018)
Ma, X.J., Cheng, P., Gong, S., Quan, X.J.: Mesoscale simulations of saturated pool boiling heat transfer under microgravity conditions. Int. J. Heat Mass Transf. 114, 453–457 (2017)
Article
Google Scholar
McNelly, M.J.: A Correlation of rates of heat transfer to nucleate boiling of liquids. J. Imperial College Chem. Eng. Soc. 7, 18–34 (1953)
Google Scholar
Merte, H., Clark, J.A.: Boiling heat transfer with cryogenic fluids at standard, fractional, and near-zero gravity. ASME J. Heat Transf. 86(3), 351–358 (1964)
Article
Google Scholar
Merte, H., Clark, J.A.: Pool boiling in an accelerating system. ASME J. Heat Transf. 83(3), 223–242 (1961)
Article
Google Scholar
Mostinski, I.L.: Application of the rule of corresponding states for calculation of heat transfer and critical heat flux. Teploenergetika 10, 66–71 (1963)
Google Scholar
Nishikawa, K., Fujita, Y., Ohta, H., Hidaka S.: Effect of the surface roughness on the nucleate boiling heat transfer over the wide range of pressure. In: Proc. 7th Int. Heat Transf. Conf. 4, 61–66 (1982)
Nolan, E., Rioux, R., Li C.H.: Experimental study of critical heat flux and heat transfer coefficient enhancements in pool boiling heat transfer with nanostructure modified active nucleation site and contact angle. In: Proceedings of ASME 2012 International Mechanical Engineering Congress & Exposition, Houston, Texas, USA, November 9–15, IMECE2012–89903 (2012)
Ohta, H., Inoue, K., Yoshida, S., Morita, T.S.: Nucleate pool boiling heat transfer in microgravity. Heat Transf.Res. 29(1–3), 196–207 (1998)
Article
Google Scholar
Raj, R., Kim, J., McQuillen, J.: Gravity scaling parameter for pool boiling heat transfer. J. Heat Transf. 132(9), 1187–1191 (2010)
Google Scholar
Raj, R., Kim, J., McQuillen, J.: On the scaling of pool boiling heat flux with gravity and heater size. J. Heat Transf. 134(1), 011502 (2012)
Raj, R., Kim, J., McQuillen, J.: Subcooled pool boiling in variable gravity environments. J. Heat Transf. 131(9), 091502 (2009).
Rohsenow, W.M.: A method of correlating heat transfer data for surface boiling of liquids. Division of Industrial Cooporation, Massachusetts Institute of Technology, Cambridge, Massachusetts, Tech. Report No. 5 (1951)
Stephan, K., Abdelsalam, M.: Heat transfer correlations for natural convection boiling. Int. J. Heat Mass Transf. 23(1), 73–87 (1980)
Article
Google Scholar
Straub, J.: Microscale boiling heat transfer under 0g and 1g conditions. Int. J. Thermal Sci. 39, 490–497 (2000)
Article
Google Scholar
Sun, R., Hu, W.R.: The thermocapillary migrations of two bubbles in microgravity environment. J. Colloid Interface Sci. 255(2), 375–381 (2002)
Article
Google Scholar
Suriyawong, A., Wongwises, S.: Nucleate pool boiling heat transfer characteristics of TiO2–water nanofluids at very low concentrations. Exp. Thermal Fluid Sci. 34, 992–999 (2010)
Article
Google Scholar
Tatsumoto, H., Shirai, Y., Shiotsu, M., Naruo, Y., Kobayashi, H., Inatani, Y.: Heat transfer characteristics of a horizontal wire in pools of liquid and supercritical hydrogen. J. Supercon. Nov. Magn. 28, 1185–1188 (2015)
Article
Google Scholar
Turton, J.S.: The effects of pressure and acceleration on the pool boiling of water and Arcton 11. Int. J. Heat Mass Transf. 11(9), 1295–1310 (1968)
Article
Google Scholar
Yang, Y., Ji, X., Xu, J.: Pool boiling heat transfer on copper foam covers with water as working fluid. Int. J. Thermal Sci. 49(7), 1227–1237 (2010)
Article
Google Scholar
Zell, M., Straub, J., Vogel, B.: Pool Boiling under Microgravity. Physicochemical Hydrodynamics 11(5/6), 813–823 (1989)
Google Scholar
Zhao, J.F., Hu, W.R.: Study on pool boiling heat transfer in microgravity. Chinese J. Space Sci. 29(1), 145–149 (2009)
Google Scholar
Zhu, C., Kuang, B., Sun, W., Fan, Y.L., Zhang, Z., Tang, C.L.: Influence of nanofluids on boiling heat transfer characteristics of Inclined Downward—facing Heating Surface. Atomic Energy Sci. Tech. 48, 268–272 (2014)
Google Scholar