Skip to main content

Investigation of Nucleate Pool Boiling Heat Transfer of Water on Platinum Wire Under Hypergravity and Earth’s Gravity


The saturated nucleate pool boiling heat transfer of water on two platinum wires with 30 μm and 50 μm in diameter was experimentally investigated under Earth’s gravity and hypergravity up to 3.0 g, with the numerical simulation of bubble morphology. In the experiments, the saturation pressure ranges from 0.1 to 0.6 MPa and the heat flux from 0.2 to 1.8 MW/m2. The experimental results show that the pool boiling heat transfer coefficient (HTC) decreases with increasing gravity at low system pressure within the experimental gravity range. However, at a pressure higher than 0.3 MPa, no further decrease of the HTC with increasing gravity was observed when the gravity greater than certain value. Increasing saturation pressure enhances pool boiling heat transfer primarily due to that it reduces the critical radius of cavities so that more cavities are activated, leading to more nucleation sites. The HTC on the 30-μm diameter platinum wire is greater than that on the 50-μm diameter one, indicating that reduction in heater size slightly enhances pool boiling heat transfer because it leads to the reduction in surface tension force. The results of the numerical study show that the total gravity effect on pool boiling heat transfer is negative under hypergravity, which is caused by the combined effects of the diameter and frequency of bubble departure and vapor generation. The effects of pressure, gravity, heat flux, and heater size on pool boiling HTC are interacted, which makes it harder to understand the mechanisms of pool boiling heat transfer under hypergravity than under Earth’s gravity. Therefore, much more experimental and numerical studies on pool boiling heat transfer under hypergravity should be performed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Data Availability

Data will be available on reasonable request.


  • Arya, M., Khandekar, S., Pratap, D., Ramakrishna, S.A.: Pool boiling of water on nano-structured micro wires at sub-atmospheric conditions. Heat Mass Transf 52(9), 1725–1737 (2016)

    Article  Google Scholar 

  • Asano, H., Akita, K., Fujii, T.: Boiling heat transfer enhancement by spray coating surface (effect of gravity on pool boiling heat transfer). In: Proc. Int. Heat Transf. Conf. 13, 13–18 August, Sydney, Australia (2006)

  • Bakhru, N., Lienhard, J.H.: Boiling from small cylinders. Int. J. Heat Mass Transf. 15(11), 2011–2025 (1972)

    Article  Google Scholar 

  • Bang, I.C., Chang, S.H.: Boiling heat transfer performance and phenomena of Al2O3–water nano-fluids from a plain surface in a pool. Int. J. Heat Mass Trans. 48(12), 2407–2419 (2005)

    Article  Google Scholar 

  • Benjamin, R.J., Balakrishnan, A.R.: Nucleate pool boiling heat transfer of pure liquids at low to moderate heat fluxes. Int. J. Heat Mass Transf. 39(12), 2495–2504 (1996)

    Article  Google Scholar 

  • Cooper, M.G.: Saturation nucleate pool boiling: a simple correlation. 1st UK National Conf. Heat Transf. Inst. Chem. Eng. 2, 785–793 (1984)

  • Chopkar, M., Das, A.K., Manna, I., Das, P.K.: Pool boiling heat transfer characteristics of ZrO2–water nanofluids from a flat surface in a pool. Heat Mass Transf. 44(8), 999–1004 (2008)

    Article  Google Scholar 

  • Fang, X.D.: Study on saturated water vapor pressure equations for calculation of aircraft air-conditioning systems. J. Aerosp. Power 10(3), 299–300, 316 (1995)

  • Fang, X.D.: Advanced two-phase flow and heat transfer. Beihang University Press, Beijing (2021)

    Google Scholar 

  • Fang, X.D., Zheng, L., He Y., Li, G., Bi. M.H., Yang, B., Wang, X.: Experimental study of pool boiling critical heat flux on thin wires under various gravities. Microgravity Sci. Technol. 31(4), 339–345 (2019)

  • Fazel, S.A.A., Roumana, S.: Pool boiling heat transfer to pure liquids. In: WSEAS Conference, USA (2010)

  • Feng, Y., Li, H.X., Zhao, J.F., Guo, K.K., Lei, X.L.: Lattice boltzmann study on influence of gravitational acceleration on pool nucleate boiling heat transfer. Microgravity Sci. Technol. 33, 21 (2021)

    Article  Google Scholar 

  • Gorenflo, D.: Pool boiling. VDI Heat Atlas. VDI-Verlag, Düsseldorf (1993)

    Google Scholar 

  • Holman, J.P., Gajda, W.J.: Experimental methods for engineers. McGraw–Hill, New York (1989)

  • Hu, W.R., Zhao, J.F., Long, M., Zhang, X.W., Liu, Q.S., Hou, M.Y., Kang, Q., Wang, Y.R., Xu, S.H., Kong, W.J., Zhang, H., Wang, S.F., Sun, Y.Q., Hang, H.Y., Huang, Y.P., Cai, W.M., Zhao, Y., Dai, J.W., Zheng, H.Q., Duan, E.K., Wang, J.F.: Space program SJ-10 of microgravity research. Microgravity Sci. Technol. 26(3), 159–169 (2014)

    Article  Google Scholar 

  • Kang, M.G.: Effect of surface roughness on pool boiling heat transfer. Int. J. Heat Mass Transf. 43(22), 4073–4085 (2000)

    Article  Google Scholar 

  • Kim, J., Benton, J.F.: Highly subcooled pool boiling heat transfer at various gravity levels. Int. J. Heat Fluid Flow 23(4), 497–508 (2002)

    Article  Google Scholar 

  • Kim, J., Benton, J.F., Wisniewski, D.: Pool boiling heat transfer on small heaters: effect of gravity and subcooling. Int. J. Heat Mass Transf. 45(19), 3919–3932 (2002)

    Article  Google Scholar 

  • Kim, J.H., You, S.M., Pak, J.Y.: Effects of heater size and working fluids on nucleate boiling heat transfer. Int. J. Heat Mass Transfer 49(1/2), 122–131 (2006)

    Article  Google Scholar 

  • Kirichenko, Y.A., Kozlov, S.M., Levchenko, N.M.: Heat transfer to helium-I during different boiling regimes at high centripetal accelerations. Cryogenics 23(4), 217–219 (1983)

    Article  Google Scholar 

  • Kline, S.J., McClintock, F.A.: Describing uncertainties in single-sample experiments. Mech. Eng. 75(1), 3–8 (1953)

    Google Scholar 

  • Kruzhilin, G.N.: Free convection transfer of heat from a horizontal plate and boiling liquid. USSR Academy Sci. 58, 1657–1660 (1947)

    Google Scholar 

  • Kutateladze, S.S.: Heat transfer and hydrodynamic resistance. Moscow: Handbook Energoatomizdat Publishing House, 357–358 (1990)

  • Kwark, S.M., Amaya, M., Kumar, R., Moreno, G., You, S.M.: Effects of pressure, orientation, and heater size on pool boiling of water with nanocoated heaters. Int. J. Heat Mass Transfer 53(23–24), 5199–5208 (2010)

    Article  Google Scholar 

  • Labuntsov, D.A.: Heat transfer problems with nucleate boiling of liquids. Therm. Eng. 19, 21–28 (1972)

    Google Scholar 

  • Lee, W.: A pressure iteration scheme for two-phase modeling, Los Alamos Scientific Laboratory, Technical Report, LA-UR, Los Alamos, New Mexico (1979)

  • Li, C.H., Li, T., Hodgins, P., Hunter, C.N., Voevodin, A.A., Jones, J.G., Peterson, G.P.: Comparison study of liquid replenishing impacts on critical heat flux and heat transfer coefficient of nucleate pool boiling on multiscale modulated porous structures. Int. J. Heat Mass Transf. 54, 3146–3155 (2011)

    Article  Google Scholar 

  • Li, G.H., Fang, X.D., Yuan, Y.L., Chen Y.Y., Wang, L., Xu, Y.:An experimental study of flow boiling frictional pressure drop of R134a in a horizontal 1.002 mm tube under hypergravity. Int. J. Heat Mass Transf. 118, 247–256 (2018)

  • Ma, X.J., Cheng, P., Gong, S., Quan, X.J.: Mesoscale simulations of saturated pool boiling heat transfer under microgravity conditions. Int. J. Heat Mass Transf. 114, 453–457 (2017)

    Article  Google Scholar 

  • McNelly, M.J.: A Correlation of rates of heat transfer to nucleate boiling of liquids. J. Imperial College Chem. Eng. Soc. 7, 18–34 (1953)

    Google Scholar 

  • Merte, H., Clark, J.A.: Boiling heat transfer with cryogenic fluids at standard, fractional, and near-zero gravity. ASME J. Heat Transf. 86(3), 351–358 (1964)

    Article  Google Scholar 

  • Merte, H., Clark, J.A.: Pool boiling in an accelerating system. ASME J. Heat Transf. 83(3), 223–242 (1961)

    Article  Google Scholar 

  • Mostinski, I.L.: Application of the rule of corresponding states for calculation of heat transfer and critical heat flux. Teploenergetika 10, 66–71 (1963)

    Google Scholar 

  • Nishikawa, K., Fujita, Y., Ohta, H., Hidaka S.: Effect of the surface roughness on the nucleate boiling heat transfer over the wide range of pressure. In: Proc. 7th Int. Heat Transf. Conf. 4, 61–66 (1982)

  • Nolan, E., Rioux, R., Li C.H.: Experimental study of critical heat flux and heat transfer coefficient enhancements in pool boiling heat transfer with nanostructure modified active nucleation site and contact angle. In: Proceedings of ASME 2012 International Mechanical Engineering Congress & Exposition, Houston, Texas, USA, November 9–15, IMECE2012–89903 (2012)

  • Ohta, H., Inoue, K., Yoshida, S., Morita, T.S.: Nucleate pool boiling heat transfer in microgravity. Heat Transf.Res. 29(1–3), 196–207 (1998)

    Article  Google Scholar 

  • Raj, R., Kim, J., McQuillen, J.: Gravity scaling parameter for pool boiling heat transfer. J. Heat Transf. 132(9), 1187–1191 (2010)

    Google Scholar 

  • Raj, R., Kim, J., McQuillen, J.: On the scaling of pool boiling heat flux with gravity and heater size. J. Heat Transf. 134(1), 011502 (2012)

  • Raj, R., Kim, J., McQuillen, J.: Subcooled pool boiling in variable gravity environments. J. Heat Transf. 131(9), 091502 (2009).

  • Rohsenow, W.M.: A method of correlating heat transfer data for surface boiling of liquids. Division of Industrial Cooporation, Massachusetts Institute of Technology, Cambridge, Massachusetts, Tech. Report No. 5 (1951)

  • Stephan, K., Abdelsalam, M.: Heat transfer correlations for natural convection boiling. Int. J. Heat Mass Transf. 23(1), 73–87 (1980)

    Article  Google Scholar 

  • Straub, J.: Microscale boiling heat transfer under 0g and 1g conditions. Int. J. Thermal Sci. 39, 490–497 (2000)

    Article  Google Scholar 

  • Sun, R., Hu, W.R.: The thermocapillary migrations of two bubbles in microgravity environment. J. Colloid Interface Sci. 255(2), 375–381 (2002)

    Article  Google Scholar 

  • Suriyawong, A., Wongwises, S.: Nucleate pool boiling heat transfer characteristics of TiO2–water nanofluids at very low concentrations. Exp. Thermal Fluid Sci. 34, 992–999 (2010)

    Article  Google Scholar 

  • Tatsumoto, H., Shirai, Y., Shiotsu, M., Naruo, Y., Kobayashi, H., Inatani, Y.: Heat transfer characteristics of a horizontal wire in pools of liquid and supercritical hydrogen. J. Supercon. Nov. Magn. 28, 1185–1188 (2015)

    Article  Google Scholar 

  • Turton, J.S.: The effects of pressure and acceleration on the pool boiling of water and Arcton 11. Int. J. Heat Mass Transf. 11(9), 1295–1310 (1968)

    Article  Google Scholar 

  • Yang, Y., Ji, X., Xu, J.: Pool boiling heat transfer on copper foam covers with water as working fluid. Int. J. Thermal Sci. 49(7), 1227–1237 (2010)

    Article  Google Scholar 

  • Zell, M., Straub, J., Vogel, B.: Pool Boiling under Microgravity. Physicochemical Hydrodynamics 11(5/6), 813–823 (1989)

    Google Scholar 

  • Zhao, J.F., Hu, W.R.: Study on pool boiling heat transfer in microgravity. Chinese J. Space Sci. 29(1), 145–149 (2009)

    Google Scholar 

  • Zhu, C., Kuang, B., Sun, W., Fan, Y.L., Zhang, Z., Tang, C.L.: Influence of nanofluids on boiling heat transfer characteristics of Inclined Downward—facing Heating Surface. Atomic Energy Sci. Tech. 48, 268–272 (2014)

    Google Scholar 

Download references


This study was supported by National Natural Science Foundation of China (52076107, 52006100), Natural Science Foundation of Jiangsu Province (BK20190469), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Xiande Fang.

Ethics declarations

Conflict of Interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Fang, X., Li, X. et al. Investigation of Nucleate Pool Boiling Heat Transfer of Water on Platinum Wire Under Hypergravity and Earth’s Gravity. Microgravity Sci. Technol. 34, 31 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


  • Pool boiling
  • Heat transfer
  • Hypergravity
  • Gravity