Skip to main content
Log in

Experimental Study on Sessile Droplet Freezing on a Cold Surface in Low Atmospheric Pressure

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

A visualization system is introduced to experimentally investigate the droplet freezing process under the influence of atmospheric pressure on a cold aluminum surface. The morphology and temperature evolution during droplet freezing process as well as the impact of wall temperature and droplet volume are analyzed and discussed under the low atmospheric pressure based on the current visualization system. The experiment results manifest that the droplet freezing process is significantly affected by the atmospheric pressure. The droplet freezing process undergoes five stages: the pre-cooling stage, the sub-cooling stage, the nucleation stage, the freezing and cooling stage, and the stable stage. The droplet temperature dramatically rises at the nucleation stage due to the release of latent heat and rapidly decreases at the freezing and cooling stage. The droplet freezing time decreases with the reduction of the atmospheric pressure. When the atmospheric pressure decreases to 0.1 bar, the droplet freezing temperature increases significantly. Under the low atmospheric pressure, the droplet freezing time decreases with the decrease of surface temperature and the increase of droplet volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Baker, M.B., Baker, M.: A new look at homogeneous freezing of water. Geophys. Res. Let. 31, L19102 (2004)

    Article  Google Scholar 

  • Bohm, R., Haque, M.R., Qu, C., Kinzel, E.C., Betz, A.R.: Accelerated freezing due to droplet pinning on a nanopillared surface. AIP. Adv. 8, 125228 (2018)

  • Chen, Y.P., Lu, P.F., Shen, C.Q., Zhang, Q.: Experimental study on frost formation on a cold surface in low atmospheric pressure. Appl. Therm. Eng. 90, 86–93 (2015)

    Article  Google Scholar 

  • Dalili, N., Edrisy, A., Carriveau, R.: A review of surface engineering issues critical to wind turbine performance. Renew. Sust. Energ. Rev. 13, 428–438 (2009)

    Article  Google Scholar 

  • Durand, G., Cadelis, L., Minier, V., Veyssiere, C., Walter, C., Pierre, A., Agabi, A., Fossat, E., Jeanneaux, F.: GIVRE: a protection against frost deposit on polar instruments. EAS. Publ. Ser. 25, 77–80 (2007)

    Article  Google Scholar 

  • Emery, A.F., Siegel, B.L.: Experimental measurements of the effects of frost formation on heat exchanger performance. Proc. AIAA/ASME. Thermonphys. Heat Trans. Conf. 139, 1–7 (1990)

    Google Scholar 

  • Fumachi, E.F., Toledo, R.C., Tenório, P.I.G., An, C.Y., Irajá, N., Bandeira, N.I.: Heat transfer in the samples solidified in drop tubes. Microgravity. Sci. Technol. 31, 185–194 (2019)

    Article  Google Scholar 

  • Hao, P., Lv, C., Zhang, X.: Freezing of sessile water droplets on surfaces with various roughness and wettability. Appl. Phys. Lett. 104, 161609 (2014)

  • Hayashi, Y., Aoki, A., Adachi, S., Hori, K.: Study of frost properties correlating with frost formation types. J. Heat. Trans. 99, 239–245 (1997)

    Article  Google Scholar 

  • Huang, L., Liu, Z., Liu, Y., Gou, Y., Wang, L.: Effect of contact angle on water droplet freezing process on a cold flat surface. Exp. Therm. Fluid. Sci. 40, 74–80 (2012)

    Article  Google Scholar 

  • Jin, Z., Wang, Z., Sui, D., Yang, Z.: The impact and freezing processes of a water droplet on different inclined cold surfaces. Int. J. Heat. Mass. Transf. 97, 211–223 (2016a)

    Article  Google Scholar 

  • Jin, Z., Zhao, Y., Sui, D., Yang, Z.: The Effects of Ambient Pressure on the Initiation of the Freezing Process for a Water Droplet on a Cold Surface. J. Heat. Trans. 138, 084502 (2016b)

  • Jung, S., Tiwari, M.K., Doan, N.V., Poulikakos, D.: Mechanism of supercooled droplet freezing on surfaces. Nat. Commun. 3, 1–8 (2012)

    Google Scholar 

  • Karlsson, L., Lycksam, H., Ljung, A.L., Gren, P., Lundström, T.S.: Experimental study of the internal flow in freezing water droplets on a cold surface. Exp. Fluids 60, 182 (2019)

    Article  Google Scholar 

  • Kind, R.J., Lawrysyn, M.A.: Aerodynamic characteristics of hoar frost roughness. AIAA. J. 30, 1703–1707 (1992)

    Article  Google Scholar 

  • Lawrence, J.S., Ashley, M.C.B., Bailey, J., Navascues, D.B., Bedding, T.R., Bland-Hawthorn, J., Bond, I., Boulanger, F., Bouwens, R., Bruntt, H., Bunker, A., Burgarella, D., Burton, M.G., Busso, M., Coward, D., Cioni, M.-R.L.: The science case for PILOT I: summary and overview. Publ. Astron. Soc. Aust. 26, 379–396 (2009)

    Article  Google Scholar 

  • Lawrence, J.S., Ashley, M.C.B., Burton, M.G., Gillingham, P.R., McGrath, A., Haynes, R., Saunders, W., Storey, J.W.V.: Dome C site testing: implications for science and technology of future telescopes. EAS. Publ. Ser. 40, 33–43 (2010)

  • Li, D., Chen, Z.Q.: Experimental study on instantaneously shedding frozen water droplets from cold vertical surface by ultrasonic vibration. Exp. Therm. Fluid. Sci. 53, 7–25 (2014a)

    Article  Google Scholar 

  • Li, D., Chen, Z.Q.: Visualization of effects of ultrasound on liquid droplet solidification and frost formation on cold flat surface. Heat. Transf. Eng. 35, 1098–1104 (2014b)

    Article  Google Scholar 

  • Liu, L., Bi, Q., Wang, G.: Rapid solidification process of a water droplet due to depressurization. Microgravity. Sci. Tec. 25, 327–334 (2014)

    Article  Google Scholar 

  • Lurie, M., Michailoff, N.: Evaporation from free water surface. Ind. Eng. Chem. 28, 345–349 (1936)

    Article  Google Scholar 

  • Ou, J.F., Shi, Q.W., Wang, Z.L., Wang, F.J., Xue, M.S., Li, W., Yan, G.L.: Sessile droplet freezing and ice adhesion on aluminum with different surface wettability and surface temperature. Sci. China. Phys. Mech. 58, 1–8 (2015)

    Article  Google Scholar 

  • Papon, P., Leblond, J., Meijer, P.H.E.: The Physics of Phase Transition: Concepts and Applications. Springer, Berlin (1999)

    MATH  Google Scholar 

  • Rahimi, M., Afshari, A., Thormann, E.: Effect of aluminum substrate surface modification on wettability and freezing delay of water droplet at subzero temperatures. ACS. Appl. Mater. Inter. 8, 11147–11153 (2016)

    Article  Google Scholar 

  • Ramos, S.M.M., Pirat, C., Cottin-Bizonne, C.: Stability of frozen water droplets on highly hydrophobic porous surfaces Temperature effects. Appl. Surf. Sci. 469, 864–869 (2019)

    Article  Google Scholar 

  • Reitz, B., Lotz, C., Gerdes, N., Linke, S., Olsen, E., Pflieger, K., Sohrt, S., Ernst, M., Taschner, P., Neumann, J., Stoll, E.: Overmeyer L: Additive manufacturing under lunar gravity and microgravity. Microgravity. Sci. Technol. 33, 1–12 (2021)

    Article  Google Scholar 

  • Singh, D.P., Singh, J.P.: Delayed freezing of water droplet on silver nanocolumnar thin film. Appl. Phys. Lett. 102, 243112 (2013)

  • Suzuki, S., Nakajima, A., Yoshida, N., Sakai, M., Hashimoto, A., Kameshima, Y., Okada, K.: Freezing of water droplets on silicon surfaces coated with various silanes. Chem. Phys. Lett. 445, 37–41 (2007)

    Article  Google Scholar 

  • Voulgaropoulos, V., Le Brun, N., Charogiannis, A., Markides, C.N.: Transient freezing of water between two parallel plates: A combined experimental and modelling study. Int. J. Heat. Mass. Transf. 153, 119596 (2020)

  • Wang, H., He, G.G., Tian, Q.Q.: Effects of nano-fluorocarbon coating on icing. Appl. Surf. Sci. 258, 7219 (2012)

    Article  Google Scholar 

  • Wu, X.M., Dai, W.T., Wang, W.C., Tang, L.M.: Visual and theoretical analyses of the early stage of frost formation on cold surfaces. J. Enhanc. Heat Transf. 14, 257–268 (2007)

    Article  Google Scholar 

  • Yamada, Y., Onishi, G., Horibe, A.: Sessile droplet freezing on hydrophobic structured surfaces under cold ambient conditions. Langmuir. 35, 16401–16406 (2019)

  • Yao, Y., Li, C., Tao, Z., Yang, R., Zhang, H.: Experimental and numerical study on the impact and freezing process of a water droplet on a cold surface. Appl. Therm. Eng. 137, 83–92 (2018)

    Article  Google Scholar 

  • Yoshizaki, I., Ishikawa, T., Adachi, S., Yokoyama, E.: Furukawa Y: Precise measurements of dendrite growth of ice crystals in microgravity. Microgravity. Sci. Technol. 24, 245–253 (2012)

    Article  Google Scholar 

  • Yuan, W., Wang, Z.G.: Observation of sessile droplet freezing on textured micropillar surfaces via visualization and thermography. J. Coat. Technol. Res. 16, 869–879 (2019)

    Article  Google Scholar 

  • Zhang, Y., Anim-Danso, E., Bekele, S., Dhinojwala, A.: Effect of surface energy on freezing temperature of water. ACS. Appl. Mater Inter. 8, 17583–17590 (2016)

    Article  Google Scholar 

Download references

Funding

This research is supported by National Natural Science Foundation of China (No. 51876184, 51706193) and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 17KJB470014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangdong Liu.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, C., Liu, F., Peng, Q. et al. Experimental Study on Sessile Droplet Freezing on a Cold Surface in Low Atmospheric Pressure. Microgravity Sci. Technol. 34, 18 (2022). https://doi.org/10.1007/s12217-022-09937-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12217-022-09937-4

Keywords

Navigation