Skip to main content
Log in

Aspect Ratio Dependence of Thermocapillary Flow Instability of Moderate-Prandtl Number Fluid in Annular Pools Heated from Inner Cylinder

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

This paper presented a set of direct numerical simulations on the thermocapillary flow instability of moderate-Prandtl number fluids in annular pools heated from inner cylinder. The emphasis is on the aspect ratio dependence of the critical Marangoni number of flow destabilization and the formation mechanism of the different flow patterns. It was found that the two-dimensional axisymmetric steady flow will bifurcate into three types of oscillatory flows, including the oscillatory concentric rings, the alternating straight spoke and the rotating wave patterns. The bifurcation process depends mainly on the aspect ratio of the annular pool when the radius ratio is fixed. With the increase of the aspect ratio, the first instability flow pattern is oscillatory concentric rings and the corresponding critical Marangoni number and the oscillatory frequency decrease first, and then increase slightly. When the flow pattern transits to the alternating straight spoke pattern at the aspect ratio of 0.415, there are an abrupt increase of the critical Marangoni number and a sudden decrease of the oscillatory frequency. Furthermore, when the rotating wave pattern appears, the critical Marangoni number decreases gradually, but the corresponding oscillatory frequency has only a slight decrease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

A :

Aspect ratio

c p :

Specific heat capacity, J/(kg∙K)

d :

Depth of annular pool, m

F :

Dimensionless frequency

m :

Ring number or wave number

Ma :

Marangoni number

p :

Pressure, Pa

P :

Dimensionless pressure

Pr :

Prandtl number

r :

Radius, m

R :

Dimensionless radius

T :

Temperature, K

u :

Radial velocity, m/s

U :

Dimensionless radial velocity

v :

Azimuthal velocity, m/s

V :

Dimensionless azimuthal velocity

w :

Axial velocity, m/s

W :

Dimensionless axial velocity

α :

Thermal diffusivity, m2/s

є :

Parameter, є  = (Ma-Macri)/Macri

Y T :

Surface tension temperature coefficient, N/(m∙K)

η :

Radius ratio

μ :

Dynamic viscosity of the fluid, kg/(m·s)

ν :

Kinematic viscosity of the fluid, m2/s

θ :

Azimuthal coordinate, rad

Θ :

Dimensionless temperature, Θ = (T-Tc)/(Th-Tc)

ρ :

Density, kg/m3

τ :

Dimensionless time

Ψ :

Dimensionless stream function

c:

Cold, centre

cri:

Critical

h:

Hot

i:

Inner

o:

Outer

s:

Stable

References

  • Azami, T., Nakamura, S., Eguchi, M., Hibiya, T.: The role of surface-tension-driven flow in the formation of a surface pattern on a Czochralski silicon melt. J. Cryst. Growth 233, 99-107 (2001)

  • Chen, J.C., Li, Y.R., Yu, J.J., Zhang, L., Wu, C.M.: Flow pattern transition of thermal-solutal capillary convection with the capillary ratio of -1 in a shallow annular pool. Int. J. Heat and Mass Transf. 95, 1-6 (2016)

  • Colinet, P., Legros, J.C., Velarde, M.G.: Nonlinear Dynamics of Surface-Tension-Driven Instabilities. Wiley-VCH Verlag Berlin GmbH, Berlin (2001)

    Book  Google Scholar 

  • Daviaud, F., Vince, J.M.: Traveling waves in a fluid layer subjected to a horizontal temperature gradient. Phys. Rev. E 48, 4432-4436 (1993).

  • Duan, L.S., Duan, L., Jiang, H., Kang, Q.: Oscillation transition routes of buoyant-thermocapillary convection in annular liquid layers. Microgravity Sci. Technol. 30:23 865-876 (2018)

  • Garnier, N., Chiffaudel, A.: Two dimensional hydrothermal waves in an extended cylindrical vessel. Eur. Phys. J. B 19, 87-95 (2001)

  • Garnier, N., Chiffaudel, A., Daviaud, F.: Hydrothermal waves in a disk of fluid, Dynamics of Spatio-temporal Cellular Structures - Henri Benard Centenary Review 207, 147-161 (2006)

  • Garnier, N., Normand, C.: Effects of curvature on hydrothermal waves instability of radial thermocapillary flows, C. R. Acad. Sci. IV-Phys. 2, 1227-1233 (2001)

  • Kamotani, Y., Ostrach, S., Masud, J.: Microgravity experiments and analysis of oscillatory thermocapillary flows in cylindrical containers. J. Fluid Mech. 410, 211-233 (2000)

  • Kang, Q., Wu, D., Duan, L., He, J.W., Hu, L., Duan, L.S., Hu, W.R.: Surface configurations and wave patterns of thermocapillary convection onboard the SJ10 satellite. Phys. Fluids 31, 044105 (2019).

  • Lappa, M.: Thermal Convection: Patterns, Evolution and stability. Wiley & Sons, (2010).

  • Lavalley, R., Amberg, G., Alfredsson, H.: Experimental and numerical investigation of nonlinear thermocapillary oscillations in an annular geometry. Eur. J. Mech. B-Fluids 20, 771-797 (2001)

  • Li, Y.R., Zhang, S., Zhang, L.: Thermocapillary convection of moderate Prandtl number in a shallow annular pool heated from inner cylinder with surface heat dissipation. Int. J. Therm. Sci. 145, 105983 (2019).

  • Li, Y.R., Imaishi, N., Azami, T., Hibiya, T.: Three-dimensional oscillatory flow in a thin annular pool of silicon melt. J. Cryst. Growth 260, 28-42 (2004)

  • Li, Y.R., Liu, Y.S., Shi, W.Y., Peng, L.: Stability of thermocapillary convection in annular pools with low Prandtl number fluid. Microgravity Sci. Technol. 21, S283-S287 (2009)

  • Li, Y.R., Peng, L., Akiyama, Y., Imaishi, N.: Three-dimensional numerical simulation of thermocapillary flow of moderate Prandtl number fluid in an annular pool. J. Cryst. Growth 259, 374-384 (2003)

  • Liu, H., Zeng, Z., Yin, L.M., Qiu, Z.H., Qiao, L.: Influence of aspect ratio on the onset of thermocapillary flow instability in annular pool heated from inner wall, Int. J. Heat Mass Transf. 129, 746-752 (2019)

  • Mo, D.M., Zhang, S., Zhang, Li., Ruan, D.F., Li, Y.R.: Effect of heat dissipation on thermocapillary convection of low Prandtl number fluid in an annular pool heated from inner cylinder. Microgravity Sci. Technol. 32: 661–672 (2020).

  • Riley, R.J., Neitzel, G.P.: Instability of thermocapillary-buoyancy convection in shallow layers. Part 1. Characterization of steady and oscillatory instabilities. J. Fluid Mech. 359, 143–164 (1998).

  • Schwabe, D., Benz, S.: Thermocapillary flow instability in an annular under microgravity–Results of the experiment Magia. Adv. Space Res. 29, 629-638 (1999)

  • Schwabe, D., Möller, U., Schneider, J., Scharmann, A.: Instabilities of shallow dynamic thermocapillary liquid layers. Phys. Fluids A 4, 2368-2381 (1992)

  • Schwabe, D., Zebib, A., Sim, B.C.: Oscillatory thermocapillary convection in open cylindrical annuli. Part 1. Experiments under microgravity. J. Fluid Mech. 491, 239–258 (2003).

  • Shi, W.Y., Liu, X., Li, G., Li, Y.R., Peng, L., Ermakov, M.K., Imaishi, N.: Thermocapillary convection instability in shallow annular pools by linear stability analysis. J. Supercond. Nov. Magn. 23, 1185-1188 (2010)

  • Sim, B.C., Zebib, A.: Effect of free surface heat loss and rotation on transition to oscillatory thermocapillary convection. Phys. Fluids 14, 225-231 (2002)

  • Smith, M.K.,  Davis, S.H.:  Instabilities of dynamic thermocapillary liquid layer. I Convective instabilities. J. Fluid Mech. 132, 119-144 (1983)

  • Sim, B.C., Zebib, A., Schwabe, D.: Oscillatory thermocapillary convection in open cylindrical annuli. Part 2. Simulations. J. Fluid Mech. 491, 259–278 (2003).

  • Shi, W.Y., Imaishi, N.: Thermocapillary convection in a shallow annular pool heated from inner wall. Microgravity Sci. Technol. 19, 104-105 (2007)

  • Yu, J.J., Li, Y.R., Wu, C.M., Chen, J.C.: Three-dimensional thermocapillary-buoyancy flow of a binary mixture with Soret effect in a shallow annular pool. Int. J. Heat Mass Transf. 90, 1071-1081 (2015a)

  • Yu, J.J., Ruan, D.F., Li, Y.R., Chen, J.C.: Experimental study on thermocapillary convection of binary mixture in a shallow annular pool with radial temperature gradient. Exp. Therm. Fluid Sci. 61, 79-86 (2015b)

  • Zhang, L., Li, Y.R., Wu, C.M., Yu, J.J.: Surface heat dissipation dependence of thermocapillary convection of moderate Prandtl number fluid in an annular pool. Microgravity Sci. Technol. 31, 527-539 (2019)

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant No. 51776022) and Chongqing Basic and Frontier Research Project (No. cstc2019jcyj-msxmX0582, cstc2018jcyjAX0597).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deng-Fang Ruan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mo, DM., Zhang, L., Ruan, DF. et al. Aspect Ratio Dependence of Thermocapillary Flow Instability of Moderate-Prandtl Number Fluid in Annular Pools Heated from Inner Cylinder. Microgravity Sci. Technol. 33, 66 (2021). https://doi.org/10.1007/s12217-021-09909-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12217-021-09909-0

Keywords

Navigation