Skip to main content
Log in

Sodium/GH4099 Heat Pipes for Space Reactor Cooling

  • Original Research
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

High temperature heat pipes were proposed for space reactor cooling because of their thermal efficiency, inherent safety, and self-actuating operation. Sodium/GH4099 heat pipes were designed and fabricated in China Academy of Aerospace Aerodynamics (CAAA). And their startup properties and thermal response were investigated systematically. It was found that sodium/GH4099 heat pipes startup successfully at 950 °C heating, displaying an uniform temperature of about 800 °C. On the other hand, charging ratio affected the startup properties significantly. Startup failures occurred for heat pipes with 24% and 30% sodium charging. Under simulated space reactor environment, pre-oxidation of GH4099 surfaces could decrease axial temperature of sodium/GH4099 heat pipes greatly. With pre-oxidation of GH4099, axial temperatures of heat pipes decreased from 1138–1198 °C to 890–951 °C. These temperatures were lower than the end-use temperature of GH4099 alloy. Therefore, it was concluded that pre-oxidized sodium/GH4099 heat pipes were candidate devices for space reactor cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

D :

Inner diameter of heat pipes, m

g :

Gravity constant, 9.8 N/kg

Kn :

Knudsen number

L :

Length of sodium/GH4099 heat pipes, m

P s :

Saturated pressure of sodium, Pa

r :

Average radius of pores in composite wicks, m

T :

Operating temperature, K or °C

T* :

Startup temperature of heat pipe, K or °C

κ :

Stefan Boltzmann constant, 5.67 × 10−8 W m−2 K−4

ρ :

Density of sodium, kg/m3

σ :

Surface tension of liquid sodium, 0.8 N/m

σ 0 :

Characteristic diameter of sodium atom, 3.567 × 10−10 m

References

  • Ai, B.C., Yu, J.J., Chen, S.Y., Lu, Q., Han, H.T., Hu, L.F.: Fabrication and testing of lithium/C-103 alloy heat pipe for sharp leading edge cooling. Heat Mass Transf. 54, 1359–1366 (2018)

    Article  Google Scholar 

  • Alario, J.P., Prager, R.C.: Space shuttle orbit heat pipe application. NASA CR-128498 (1972)

  • Boman, B.L., Citrin, K.H., Garner, E.C., Stone, J.E.: Heat pipes for leading edges of hypersonic vehicles. NASA CR-181922, December, 1989

  • Brovalsky, Y.A., Bystrov, P.I., Melnikov, M.V.: The method of calculation and investigation of high-temperature heat pipe characteristics taking into account the vapor flow compressibility, friction and velocity profile. Heat Pipes 1, 113–122 (1976)

    Google Scholar 

  • Camarda, C.: Aerothermal tests of a heat pipe cooled leading edge at Mach 7. NASA TP-1320 (1978)

  • Cao, Y., Faghri, A.: A numerical analysis of high-temperature heat pipe startup from the frozen state. J. Heat Transf. 115, 247–254 (1993a)

    Article  Google Scholar 

  • Cao, Y., Faghri, A.: Simulation of the early startup period of high-temperature heat pipes from the frozen state by a rarefied vapor self-diffusion model. J. Heat Transf. 115, 239–246 (1993b)

    Article  Google Scholar 

  • Chen, S.Y., Han, H.T., Shi, J.T., Lu, Q., Hu, L.F., Ai, B.C.: Applications of sodium/GH4099 heat pipes for nose cap cooling. Microgravity Sci. Technol. 31, 417–424 (2019)

    Article  Google Scholar 

  • Chu, M., Lu, Q., Han, H.T., Hu, L.F., Yu, J.J., Ai, B.C.: Fabrication of sodium/inconel/718 heat pipes for combustor cooling. Microgravity Sci. Technol. 31, 783–791 (2019)

    Article  Google Scholar 

  • Cotter, T.P.: Theory of Heat Pipes (No. LA-3246-MS). Los Alamos Scientific Lab Albuquerque NM (1965)

  • David, B.: Overview of space reactors. Space Prime-Power Conference, Norfolk, Virginia, February 1982

  • Deng, D.Y., Chen, S.Y., Ai, B.C., Qu, W., Yu, J.J.: Calculation investigation of high-temperature heat pipe startup of sharp leading edge. Acta Aerodyn. Sin. 34, 646–651 (2016) (in Chinese)

    Google Scholar 

  • Dickinson, T.J.: Performance Analysis of a Liquid Metal Heat Pipe Space Shuttle Experiment. Air University, Department of the Air Force, AFIT/GAE/ENY/96D-2, December, 1996

  • Dickinson, T.J., Bowman, W.J., Stoyanof, M.: Performance of liquid metal heat pipes during a space shuttle flight. J. Thermophys. Heat Transf. 12, 263–269 (1998)

    Article  Google Scholar 

  • El-Genk, M.S.: Deployment history and design considerations for space reactor power systems. Acta Astronaut. 64, 833–849 (2009)

    Article  Google Scholar 

  • El-Genk, M.S., Seo, J.T.: Study of the SP-100 radiator heat pipes response to external thermal exposure. J. Propuls. Power 6, 69–77 (1990)

    Article  Google Scholar 

  • El-Genk, M., Tournier, J.M.: Uses of liquid-metal and water heat pipes in space reactor power systems. Front. Heat Pipes 2, 1–24 (2011)

    Article  Google Scholar 

  • Faghri, A.: Heat Pipe Science and Technology, Second version. University of Connecticut, U.S.A. ISBN:978-0-9842760-1-1 (2016)

  • Frisbee, R.H.: Advanced space propulsion for the 21st century. J. Propuls. Power 19, 1129–1154 (2010)

    Article  Google Scholar 

  • Glass, D.E., Camarda, C.J.: Fabrication and testing of a leading edge-shaped heat pipe. AIAA-99-4866 (1999). https://doi.org/10.2514/2.3515

  • Kasen, S.D.: Thermal management at hypersonic leading edges. PH.D. Dissertation, University of Virginia, May 2013

  • Levy, E.K.: Effects of friction on the sonic velocity limit in sodium heat pipes. AIAA 6th Thermophysics Conference, Tullahoma, Term (1971)

  • Lu, Q., Han, H.T., Hu, L.F., Chen, S.Y., Yu, J.J., Ai, B.C.: Preparation and testing of nickel-based superalloy/sodium heat pipes. Heat Mass Transf. 53, 3391–3397 (2017)

    Article  Google Scholar 

  • Presby, A.L.: Thermophotovoltaic energy conversion in space nuclear reactor power systems. Thesis, Naval Postgraduate School, Monterey, CA, December, 2014

  • Rees, R.T., Vick, C.P.: Soviet nuclear powered satellites. J. Br. Interplanet. Soc. 36, 457–462 (1983)

    Google Scholar 

  • Rossomme, S., Goffaux, C., Hillewaert, K., Colinet, P.: Multi-scale modeling of radial heat transfer in grooved heat pipe evaporators. Microgravity Sci. Technol. 20, 293–297 (2018)

    Article  Google Scholar 

  • Tilton, D.E., Chow, L.C., Mahefkey, E.T.: Transient response of a liquid metal heat pipe. J. Thermophys. Heat Transf. 2, 25–30 (1988)

    Article  Google Scholar 

  • Tolubinskii, V., Shevchuk, E., Stambrovskii, V.: Study of liquid-metal heat pipes characteristics at start-up and operation under gravitation. 3rd International Heat Pipe Conference, vol. 1, pp. 274–282 (1978)

  • Truscello, V.C., Rutger, L.L.: The SP-100 power system. In: Proceedings of the 9th Symposium on Space Nuclear Power Systems, vol. 246, No. 1, pp. 1–23. AIP Publishing (1992)

  • Wang, C.L., Chen, J., Qiu, S.Z., Tian, W.X., Zhang, D.L., Su, G.H.: Performance analysis of heat pipe radiator units for space nuclear power reactor. Ann. Nucl. Energy 103, 74–84 (2017)

    Article  Google Scholar 

  • Wheeler, A.R., Klein, A.C.: Modeling and analysis of a heat transport transient test facility for space nuclear system. Nucl. Technol. 188, 45–62 (2013)

    Article  Google Scholar 

  • Yan, M.G., Liu, B.C., Li, J.G., et al.: China Aeronautical Material Handbook, pp. 203–279. Beijing (2001). ISBN 7-5066-2439-7 (in Chinese)

Download references

Acknowledgements

Authors would like to thank Professor Xuejun Zhang for useful discussions about the simulation results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longfei Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, L., Chen, Z., Shi, K. et al. Sodium/GH4099 Heat Pipes for Space Reactor Cooling. Microgravity Sci. Technol. 33, 60 (2021). https://doi.org/10.1007/s12217-021-09906-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12217-021-09906-3

Keywords

Navigation