Abstract
An improved single-relaxation-time lattice Boltzmann model of the melting with natural convection in a cavity submitted to an inhomogeneous magnetic field is developed and comparatively investigated in this paper, which can not only reduce the numeric diffusion at the phase boundary obviously but also recover the macroscopic energy equations correctly. Three numerical benchmark cases are performed, including the half-space conduction melting, convection-dominated melting, and natural convection under an inhomogeneous magnetic field. Impacts of the dimensionless magnetic force parameter and the magnetic field inclination angle on the melting process are presented in relation to the average Nusselt number, liquid fraction, temperature profile, melting front and pressure distribution. The results show that the numerical predictions based on the current model agree with analytical solutions and present better accuracy than those reported in previous studies. Like the buoyancy force, the magnetic force also has a vital influence on the natural convection development in the melting process. Compared with the case without a magnetic field, the magnetic field angle can be adjusted to enhance and suppress the melting process by employing the coupling effect of the magnetic force and gravity. Moreover, there exists an optimal magnetic field inclination angle for maximizing the melting heat transfer performance. Besides, increasing the dimensionless magnetic parameter expands the gain of melting enhancement while expanding the range of inclination angles that enhances melting performance.
Similar content being viewed by others
Abbreviations
- a m :
-
Magnetic acceleration(m/s2)
- c :
-
Lattice speed (m/s)
- c 0 :
-
Constant
- c p :
-
Specific heat at constant pressure (kJ/(kg K))
- c s :
-
Sound speed (m/s)
- e i :
-
Discrete lattice velocity in direction i (m/s)
- En :
-
Total enthalpy (kJ/kg)
- En 0 :
-
Total enthalpy at the beginning (kJ/kg)
- En 1 :
-
Total enthalpy at the end (kJ/kg)
- f i :
-
Density distribution function in direction i (kg/m3)
- f i eq :
-
Equilibrium distribution function of density in direction i (kg/m3)
- f l :
-
Liquid volume fraction
- F :
-
Body force per unit mass (N/kg)
- F i :
-
Discrete body force in direction i (kg/(m3 s))
- F m :
-
Magnetic force per unit mass (N/kg)
- Fo :
-
Fourier number, Fo = αt/L2
- g :
-
Acceleration due to gravity (m/s2)
- g i :
-
Temperature distribution function in direction i (K)
- g i eq :
-
Equilibrium temperature distribution function in direction i (K)
- H :
-
Height of the domain or characteristic length (m)
- H m :
-
Magnetic field intensity
- k :
-
Thermal conductivity coefficient (W/(m K))
- L :
-
Weight of the domain or characteristic length (m)
- L a :
-
Latent heat of phase change(kJ/kg)
- Nu :
-
Nusselt number
- Nu avr :
-
Average Nusselt number
- p :
-
Pressure (Pa)
- P :
-
Dimensionless pressure
- Pr :
-
Prandtl number
- r :
-
Space position (m)
- Ra :
-
Rayleigh number
- Sr i :
-
Discrete source term (W/m3)
- Ste :
-
Stefan number
- t :
-
Time (s)
- T :
-
Temperature (K)
- T c :
-
Temperature of cold wall (K)
- T h :
-
Temperature of hot wall (K)
- T init :
-
Initial temperature (K)
- T m :
-
Melting temperature (K)
- u :
-
Velocity (m/s)
- u x :
-
X velocity (m/s)
- u y :
-
Y velocity (m/s)
- v :
-
Kinematic coefficient of viscosity (m2/s)
- w i :
-
Weight coefficient
- x, y :
-
Cartesian coordinates (m)
- α :
-
Thermal diffusivity (m2/s)
- β :
-
Coefficient of thermal expansion (1/K)
- γ :
-
Dimensionless magnetic force
- Δx :
-
Lattice space (m)
- Δt :
-
Time step (s)
- θ m :
-
Inclination angle
- λ :
-
Melting coefficient
- μ 0 :
-
Vacuum permeability
- υ :
-
Kinematic viscosity (m2/s)
- ξ :
-
A constant parameter
- ρ :
-
Density (kg/m3)
- τ f , τ T :
-
Dimensionless relaxation time
- χ m :
-
Magnetic susceptibility
- s :
-
Solid phase
- l :
-
Liquid phase
- i :
-
Direction i in a lattice
- PCM:
-
Phase change material
References
Alamiri, A., Khanafer, K., Pop, I.: Steady-state conjugate natural convection in a fluid-saturated porous cavity. Int J Heat Mass Transf. 51, 4260–4275 (2008)
Asako, Y., Goncalves, E., Faghri, M., Charmchi, M.: Numerical solution of melting processes for fixed and unfixed phase change material in the presence of magnetic field-simulation of low-gravity environment. Numer Heat Tranf A-Appl. 42, 565–583 (2002)
Basak, T., Roy, S., Balakrishnan, A.: Effects of thermal boundary conditions on natural convection flows within a square cavity. Int J Heat Mass Transf. 49, 4525–4535 (2006)
Bertrand, O., Binet, B., Combeau, H.: Melting driven by natural convection A comparison exercise: first results. Int J Therm Sci. 38, 5–26 (1999)
Bian, Q., Tang, X., Dai, R., Zeng, M.: Evolution phenomena and surface shrink of the melt pool in an additive manufacturing process under magnetic field. Int J Heat Mass Transf. 123, 760–775 (2018)
Biwole, P.H., Groulx, D., Souayfane, F., Chiu, T.: Influence of fin size and distribution on solid-liquid phase change in a rectangular enclosure. Int J Therm Sci. 124, 433–446 (2018)
Bondareva, N.S., Sheremet, M.A.: Effect of inclined magnetic field on natural convection melting in a square cavity with a local heat source. J Magn Magn Mater. 419, 476–484 (2016)
Bondareva, N.S., Sheremet, M.A.: Natural convection heat transfer combined with melting process in a cubical cavity under the effects of uniform inclined magnetic field and local heat source. Int J Heat Mass Transf. 108, 1057–1067 (2017)
Braithwaite, D., Beaugnon, E., Tournier, R.: Magnetically controlled convection in a paramagnetic fluid. Nature 354, 134–136 (1991)
Chai, Z., Huang, C., Shi, B., Guo, Z.: A comparative study on the lattice Boltzmann models for predicting effective diffusivity of porous media. Int J Heat Mass Transf. 98, 687–696 (2016)
Chen, S., Liu, Z., Tian, Z., Shi, B., Zheng, C.: A simple lattice Boltzmann scheme for combustion simulation. Comput Math Appl. 55, 1424–1432 (2008)
Chen, Y., Gao, W., Zhang, C., Zhao, Y.: Three-dimensional splitting microfluidics. Lab Chip 16(8), 1332–1339 (2016)
Chen, Y., Wu, L., Zhang, L.: Dynamic behaviors of double emulsion formation in a flow-focusing device. Int J Heat Mass Transfer 82, 42–50 (2015)
Chen, Y.P., Deng, Z.L.: Hydrodynamics of a droplet passing through a microfluidic T-junction. J Fluid Mech 819, 401–434 (2017)
Chen, Z., Gao, D., Shi, J.: Experimental and numerical study on melting of phase change materials in metal foams at pore scale. Int J Heat Mass Transf. 72, 646–655 (2014)
Chopard, B., Falcone, J., Latt, J.: The lattice Boltzmann advection-diffusion model revisited. Eur Phys J-Spec Top. 171, 245–249 (2009)
Dai, R., Bian, Q., Wang, Y., Wang, Q., Zeng, M.: Lattice Boltzmann simulation for melting control through an extra magnetic quadrupole field. Numer Heat Tranf A-Appl. 75, 254–270 (2019)
Dai, R., Wu, Y., Mostaghimi, J., Tang, L., Zeng, M.: Characteristics and control mechanism of melting process under extra magnetic force fields. Appl Therm Eng. 114704, 167 (2020)
Deng, Z., Liu, X., Zhang, C., Huang, Y., Chen, Y.: Melting behaviors of PCM in porous metal foam characterized by fractal geometry. Int J Heat Mass Transf. 113, 1031–1042 (2017)
Du, R., Sun, D., Shi, B., Chai, Z.: Lattice Boltzmann model for time sub-diffusion equation in Caputo sense. Appl Math Comput. 358, 80–90 (2019)
Faden, M., Konighaagen, A., Hohlein, S., Bruggemann, D.: An implicit algorithm for melting and settling of phase change material inside macrocapsules. Int J Heat Mass Transf. 117, 757–767 (2018)
Feng, Y., Li, H., Li, L., Zhan, F.: Investigation of the effect of magnetic field on melting of solid gallium in a bottom-heated rectangular cavity using the lattice Boltzmann method. Numer Heat Tranf A-Appl. 69, 1263–1279 (2016)
Gao, D., Chen, Z., Chen, L., Zhang, D.: A modified lattice Boltzmann model for conjugate heat transfer in porous media. Int J Heat Mass Transf. 105, 673–683 (2017b)
Gao, D., Chen, Z., Zhang, D., Chen, L.: Lattice Boltzmann modeling of melting of phase change materials in porous media with conducting fins. Appl Therm Eng. 118, 315–327 (2017a)
Gao, D., Tian, F., Chen, Z., Zhang, D.: An improved lattice Boltzmann method for solid-liquid phase change in porous media under local thermal non-equilibrium conditions. Int J Heat Mass Transf. 110, 58–62 (2017c)
Gao, W., Chen, Y.P.: Microencapsulation of solid cores to prepare double emulsion droplets by microfluidics. Int J Heat Mass Transfer 135, 158–163 (2019)
Guo, Z., Zhao, T.S.: A lattice Boltzmann model for convection heat transfer in porous media. Numer Heat Tranf B-Fundam. 47, 157–177 (2005)
Guo, Z., Zheng, C., Shi, B.: An extrapolation method for boundary conditions in lattice Boltzmann method. Phys Fluids. 14, 2007–2010 (2002)
He, B., Lu, S., Gao, D., Chen, W., Li, X.: Lattice Boltzmann simulation of double diffusive natural convection of nanofluids in an enclosure with heat conducting partitions and sinusoidal boundary conditions. Int J Mech Sci. 105003, 161–162 (2019b)
He, Y.L., Liu, Q., Li, Q., Tao, W.Q.: Lattice Boltzmann methods for single-phase and solid-liquid phase-change heat transfer in porous media: A review. Int J Heat Mass Transf. 129, 160–197 (2019a)
Hu, Y., Li, D., Shu, S., Niu, X.: Lattice Boltzmann simulation for three-dimensional natural convection with solid-liquid phase change. Int J Heat Mass Transf. 113, 1168–1178 (2017)
Huang, H., Wang, L., Lu, X.: Evaluation of three lattice Boltzmann models for multiphase flows in porous media. Comput Math Appl. 61, 3606–3617 (2011)
Huang, R., Wu, H., Ping, C.: A new lattice Boltzmann model for solid-liquid phase change. Int J Heat Mass Transf. 59, 295–301 (2013)
Huang, R., Wu, H.: Phase interface effects in the total enthalpy-based lattice Boltzmann model for solid–liquid phase change. J Comput Phys. 294, 346–362 (2015)
Huber, C., Parmigiani, A., Chopard, B., Manga, M., Bachmann, O.: Lattice Boltzmann model for melting with natural convection. Int J Heat Fluid Flow. 29, 1469–1480 (2008)
Jiang, C., Feng, W., Zhong, H., Zen, J., Zhu, Q.: Effects of a magnetic quadrupole field on thermomagnetic convection of air in a porous squareen closure. J Magn Magn Mater. 357, 53–60 (2014)
Jourabian M, Farhadi M, Darzi AAR.: Simulation of natural convection melting in an inclined cavity using lattice Boltzmann method. Sci Iran. 19, 1066–73(2012)
Liang, H., Li, Y., Chen, J., Xu, J.: Axisymmetric lattice Boltzmann model for multiphase flows with large density ratio. Int J Heat Mass Transf. 130, 1189–1205 (2019)
Liu, Q., Feng, X., He, Y.L., Lu, C., Gu, Q.: Three-dimensional multiple-relaxation-time lattice Boltzmann models for single-phase and solid-liquid phase-change heat transfer in porous media at the REV scale. Appl Therm Eng. 152, 319–337 (2019)
Luo, K., Yao, F., Yi, H., Tan, H.: Lattice Boltzmann simulation of convection melting in complex heat storage systems filled with phase change materials. Appl Therm Eng. 86, 238–250 (2015)
Mehryan, S.A.M., Tahmasebi, A., Izadi, M., Ghalambaz, M.: Melting behavior of phase change materials in the presence of a non-uniform magnetic-field due to two variable magnetic sources. Int J Heat Mass Transf. 149, 119–184 (2020)
Rong, F., Guo, Z., Chai, Z., Shi, B.: A lattice Boltzmann model for axisymmetric thermal flows through porous media. Int J Heat Mass Transf. 53, 5519–5527 (2010)
Sun, D., Xing, H., Dong, X., Han, Y.: An anisotropic lattice Boltzmann-Phase field scheme for numerical simulations of dendritic growth with melt convection. Int J Heat Mass Transf. 133, 1240–1250 (2019)
Sheikholeslami, M., Rokni, H.B.: Melting heat transfer influence on nanofluid flow inside a cavity in existence of magnetic field. Int J Heat Mass Transf. 114, 517–526 (2017)
Song, K., Tagawa, T.: Thermomagnetic convection of oxygen in a square enclosure under non-uniform magnetic field. Int J Therm Sci. 125, 52–65 (2018)
Sun, D., Wang, Y., Yu, H., Han, Q.: A lattice Boltzmann study on dendritic growth of a binary alloy in the presence of melt convection. Int J Heat Mass Transf. 123, 213–226 (2018)
Tagawa, T., Shigemitsu, R., Ozoe, H.: Magnetizing force modeled and numerically solved for natural convection of air in a cubic enclosure: effect of the direction of the magnetic field. Int J Heat Mass Transf. 45, 267–277 (2002)
Tao, Y., You, Y., He, Y.L.: Lattice Boltzmann simulation on phase change heat transfer in metal foams/paraffin composite phase change material. Appl Therm Eng. 93, 476–485 (2016)
Wang, L., Wakayama, N.I.: Control of natural convection in non-and low-conducting diamagnetic fluids in a cubical enclosure using inhomogeneous magnetic fields with different directions. Chem Eng Sci. 57, 1867–1876 (2002)
Xu, A., Zhao, T.S., An, L., Shi, L.: A three-dimensional pseudo-potential-based lattice Boltzmann model for multiphase flows with large density ratio and variable surface tension. Int J Heat Fluid Flow. 56, 261–271 (2015)
Yamamoto, K., Takada, N., Misawa, M.: Combustion simulation with Lattice Boltzmann method in a three-dimensional porous structure. Proc Combust Inst. 30, 1509–1515 (2005)
Yang, L., Ren, J., Song, Y., Guo, Z.: Free convection of a gas induced by a magnetic quadrupole field. J Magn Magn Mater. 261, 377–384 (2003)
Yang, L., Ren, J., Song, Y., Min, J., Guo, Z.: Convection heat transfer enhancement of air in a rectangular duct by application of a magnetic quadrupole field. Int J Eng Sci. 42, 491–507 (2004)
Yu, C., Zhang, X., Chen, X., Zhang, C., Chen, Y.: Melting performance enhancement of a latent heat storage unit using gradient fins. Int J Heat Mass Transfer 150, 119330 (2020)
Zhang, C., Li, J., Chen, Y.: Improving the energy discharging performance of a latent heat storage (LHS) unit using fractal-tree-shaped fins. Appl Energ 259, 114102 (2020)
Zhang, H., Charmchi, M., Veilleux, D., Faghri, M.: Numerical and Experimental Investigation of Melting in the Presence of a Magnetic Field: Simulation of Low-Gravity Environment. J Heat Transf-Trans ASME. 129, 568–576 (2007)
Zhang, C., Wu, S., Yao, F.: Evaporation regimes in an enclosed narrow space. Int J Heat Mass Transf. 138, 1042–1053 (2019)
Zhao, Y., Shi, B., Chai, Z., Wang, L.: Lattice Boltzmann simulation of melting in a cubical cavity with a local heat-flux source. Int J Heat Mass Transf. 127, 497–506 (2018)
Zhu, W., Wang, M., Chen, H.: 2D and 3D lattice Boltzmann simulation for natural convection melting. Int J Therm Sci. 117, 239–250 (2017)
Acknowledgements
This work is supported by National Natural Science Foundation of China (Grant No. 51876184) and the Science Fund of Nanjing Institute of Technology (No. CXY201924 and No. CKJA201604).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Cao, X., Gao, D., Huang, Y. et al. An Improved Lattice Boltzmann Model for Convection Melting in the Existence of an Inhomogeneous Magnetic Field. Microgravity Sci. Technol. 33, 56 (2021). https://doi.org/10.1007/s12217-021-09903-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s12217-021-09903-6