Abstract
In this paper, a collision friction model for a double-layer MoS2 film is proposed considering the microgravity induced collision in space environment. A modified REBO (Reactive Empirical Bond Order) potential is used to describe interactions among the atoms in the MoS2 film. The collision friction process of the MoS2 film is simulated by vibrations in the y and z directions, and the dependence of average friction force is analyzed. The influence of a single vibration in the y direction on the friction forces can be ignored, while the vibration in the z direction shows great influence. The effects of vibration frequency and amplitude on frictional behaviors of the MoS2 film are investigated. The average friction forces during the collision friction process correlate with the frequency of the vibration in the z direction, and the relationship shows four stages. As the frequency increases, average friction forces show low values in the first stage, and they are increased as the frequency in the second stage. In the third stage, the average friction forces are decreased, and they come to a stable level in the fourth stage. Increasing the vibration amplitude at different frequencies leads to an increase in average friction force, due to that the increased amplitude results in a high indentation depth. The puckering phenomenon occurs at a specific frequency, which is a reason that the average friction force is increased during this collision friction process.
Similar content being viewed by others
References
Cao, X.A., Gan, X.H., Lang, H.J., Yu, K., Ding, S.Y., Peng, Y.T., Yi, W.M.: Anisotropic nanofriction on MoS2 with different thicknesses. Tribol. Int. 134, 308–316 (2019)
Cao, X.A., Gan, X.H., Peng, Y.T., Wang, Y.X., Zeng, X.Z., Lang, H.J., Deng, J.N., Zou, K.: An ultra-low frictional interface combining FDTS SAMs with molybdenum disulfide. Nanoscale 10(1), 378–385 (2018)
Claerbout, V.E.P., Polcar, T., Nicolini, P.: Superlubricity achieved for commensurate sliding: MoS2 frictional anisotropy in silico. Comput. Mater. Sci. 163, 17–23 (2019)
Colas, G., Saulot, A., Godeau, C., Michel, Y., Berthier, Y.: Decrypting third body flows to solve dry lubrication issue-MoS2 case study under ultrahigh vacuum. Wear 305(1–2), 192–204 (2013)
Delhommelle, J., Millie, P.: Inadequacy of the Lorentz-Berthelot combining rules for accurate predictions of equilibrium properties by molecular simulation. Mol. Phys. 99(8), 619–625 (2001)
Fleischauer, P.D.: Effects of crystallite orientation on environmental stability and lubrication properties of sputtered MoS2 thin films. ASLE Trans. 27(1), 82–88 (1984)
Fleischauer, P.D., Bauer, R.: Chemical and structural effects on the lubrication properties of sputtered MoS2 films. Tribol. Trans. 31(2), 239–250 (1988)
Fusaro, R.L.: Lubrication and failure mechanisms of molybdenum disulfide films. I - Effect of atmosphere. Technical Paper 1343 NASA (1978)
Fusaro, R.L.: Effect of substrate surface finish on the lubrication and failure mechanisms of molybdenum disulfide films. ASLE Trans. 25(2), 141–156 (1982)
Gao, X.M., Hu, M., Fu, Y.L., Weng, L.J., Liu, W.M., Sun, J.Y.: MoS2-Au/Au multilayer lubrication film with better resistance to space environment. J. Alloys Compd. 815, 152483 (2020)
Ghobadi, N.: A comparative study of the mechanical properties of multilayer MoS2 and graphene/MoS2 heterostructure: effects of temperature. number of layers and stacking order. Curr. Appl. Phys. 17(11), 1483–1493 (2017)
Holinski, R., Gänsheimer, J.: A study of the lubricating mechanism of molybdenum disulfide. Wear 19(3), 329–342 (1972)
Hou, K.M., Han, M.M., Liu, X.H., Wang, J.Q., He, Y.Z., Yang, S.R.: In situ formation of spherical MoS2 nanoparticles for ultra-low friction. Nanoscale 10(42), 19979–19986 (2018)
Huang, P., Castellanos-Gomez, A., Guo, D., Xie, G.X., Li, J.: Frictional characteristics of suspended MoS2. J. Phys. Chem. C 122(47), 26922–26927 (2018a)
Huang, P., Guo, D., Xie, G.X., Li, J.: Electromechanical failure of MoS2 nanosheets. Phys. Chem. Chem. Phys. 20(27), 18374–18379 (2018b)
Huang, Y.Z., Liu, L., Yang, J.J., Chen, Y.F.: Nanotribological properties of ALD-made ultrathin MoS2 influenced by film thickness and scanning velocity. Langmuir 35(10), 3651–3657 (2019)
Irving, B.J., Nicolini, P., Polcar, T.: On the lubricity of transition metal dichalcogenides: an ab initio study. Nanoscale 9(17), 5597–5607 (2017)
Li, H., Wang, J.H., Gao, S., Chen, Q., Peng, L.M., Liu, K.H., Wei, X.L.: Superlubricity between MoS2 monolayers. Adv. Mater. 29(27), 1701474 (2017)
Li, M., Shi, J.L., Liu, L.Q., Yu, P., Xi, N., Wang, Y.C.: Experimental study and modeling of atomic-scale friction in zigzag and armchair lattice orientations of MoS2. Sci. Technol. Adv. Mater. 17(1), 189–199 (2016)
Liang, T., Phillpot, S.R., Sinnott, S.B.: Parametrization of a reactive many-body potential for Mo-S systems. Phys. Rev. B 79(24), 245110 (2009)
Liang, T., Phillpot, S.R., Sinnott, S.B.: Erratum: Parametrization of a reactive many-body potential for Mo-S systems [Phys. Rev. B 79(24), 245110 (2009)]. Phys. Rev. B 85(19), 199903 (2012)
Moore, D.F.: Principles and applications of tribology. Pergamon Press, Oxford (1975)
Nicolini, P., Polcar, T.: A comparison of empirical potentials for sliding simulations of MoS2. Comput. Mater. Sci. 115, 158–169 (2016)
Onodera, T., Morita, Y., Suzuki, A., Koyama, M., Tsuboi, H., Hatakeyama, N., Endou, A., Takaba, H., Kubo, M., Dassenoy, F., Minfray, C., Joly-Pottuz, L., Martin, J.-M., Miyamoto, A.: A computational chemistry study on friction of h-MoS2. Part I. Mechanism of single sheet lubrication. J. Phys. Chem. B 113(52), 16526–16536 (2009)
Onodera, T., Morita, Y., Nagumo, R., Miura, R., Suzuki, A., Tsuboi, H., Hatakeyama, N., Endou, A., Takaba, H., Dassenoy, F., Minfray, C., Joly-Pottuz, L., Kubo, M., Martin, J.-M., Miyamoto, A.: A computational chemistry study on friction of h-MoS2. Part II. Friction anisotropy. J. Phys. Chem. B 114(48), 15832–15838 (2010)
Pang, H.S., Li, M.L., Gao, C.H., Huang, H.L., Zhuo, W.R., Hu, J.Y., Wan, Y.L., Luo, J., Wang, W.D.: Phase transition of single-layer molybdenum disulfide nanosheets under mechanical loading based on molecular dynamics simulation. Materials 11(4), 502 (2018a)
Pang, H.S., Li, M.L., Gao, C.H., Lai, L.F., Zhou, W.R.: Characterization of frictional properties of single-layer molybdenum-disulfide film based on a coupling of tip radius and tip-sample distance by molecular-dynamics simulations. Nanomaterials 8(6), 387 (2018b)
Park, H., Shin, G.H., Lee, K.J., Choi, S.-Y.: Probing temperature-dependent interlayer coupling in a MoS2/h-BN heterostructure. Nano. Res. 13(2), 576–582 (2020)
Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comp. Phys. 117(1), 1–19 (1995)
Pope, L.E., Panitz, J.K.G.: The effects of hertzian stress and test atmosphere on the friction coefficients of MoS2 coatings. Surf. Coat. Technol. 36(1–2), 341–350 (1988)
Quereda, J., Castellanos-Gomez, A., Agrait, N., Rubio-Bollinger, G.: Single-layer MoS2 roughness and sliding friction quenching by interaction with atomically flat substrates. Appl. Phys. Lett. 105(5), 053111 (2014)
Serpini, E., Rota, A., Valeri, S., Ukraintsev, E., Rezek, B., Polcar, T., Nicolini, P.: Nanoscale frictional properties of ordered and disordered MoS2. Tribol. Int. 136, 67–74 (2019)
Shi, Y.B., Cai, Z.B., Pu, J.B., Wang, L.P., Xue, Q.J.: Interfacial molecular deformation mechanism for low friction of MoS2 determined using ReaxFF-MD simulation. Ceram. Int. 45(2), 2258–2265 (2019)
Singer, I.L., Bolster, R.N., Wegand, J., Fayeulle, S., Stupp, B.C.: Hertzian stress contribution to low friction behavior of thin MoS2 coatings. Appl. Phys. Lett. 57(10), 995–997 (1990)
Spalvins, T.: Deposition of MoS2 films by physical sputtering and their lubrication properties in vacuum. ASLE Trans. 12(1), 36–43 (1969)
Spalvins, T.: Coatings for wear and lubrication. Thin Solid Films 53(3), 285–300 (1978)
Stewar, J.A., Spearot, D.E.: Atomistic simulations of nanoindentation on the basal plane of crystalline molybdenum disulfide(MoS2). Modelling Simul. Mater. Sci. Eng. 21(4), 045003 (2013)
Stoyanov, P., Gupta, S., Chromik, R.R., Lince, J.R.: Microtribological performance of Au-MoS2 nanocomposite and Au/MoS2 bilayer coatings. Tribol. Int. 52, 144–152 (2012)
Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO – the Open Visualization Tool. Modelling Simul. Mater. Sci. Eng. 18(1), 015012 (2010)
Takahashi, N., Shiojiri, M., Enomoto, S.: High resolution transmission electron microscope observation of stacking faults of molybdenum disulphide in relation to lubrication. Wear 146(1), 107–123 (1991)
Tong, R.T., Han, B., Quan, Z.F., Liu, G.: Molecular dynamics simulation of friction and heat properties of nano-texture gold film in space environment. Surf. Coat. Tech. 358, 775–784 (2019a)
Tong, R.T., Liu, G.: Friction property of impact sliding contact under vacuum and microgravity. Microgravity Sci. Tec. 31(1), 85–94 (2019)
Tong, R.T., Liu, G.: Modelling of unidirectional reciprocating sliding contacts of nanoscale textured surfaces considering the impact effects in microgravity environment. Microgravity Sci. Tec. 32(2), 155–166 (2020a)
Tong, R.T., Liu, G.: Vibration induced reciprocating sliding contacts between nanoscale multi-asperity tips and a textured surface. Microgravity Sci. Tec. 32(1), 79–88 (2020b)
Tong, R.T., Quan, Z.F., Han, B., Liu, G.: Coarse-grained molecular dynamics simulation on friction behaviors of textured ag-coating under vacuum and microgravity environments. Surf. Coat. Tech. 359, 265–271 (2019b)
Tong, R.T., Quan, Z.F., Zhao, Y.D., Han, B., Liu, G.: Influence of nanoscale textured surfaces and subsurface defects on friction behaviors by molecular dynamics simulation. Nanomaterials 9(11), 1617(1–15) (2019)
Wang, D.F., Yu, H., Tao, L., Xiao, W.D., Fan, P., Zhang, T.T., Liao, M.Z., Guo, W., Shi, D.X., Du, S.X., Zhang, G.Y., Gao, H.J.: Bandgap broadening at grain boundaries in single-layer MoS2. Nano. Res. 11(11), 6102–6109 (2018)
Wang, J.D., Chen, S., Cui, K., Li, D.G., Chen, D.R.: Approach and coalescence of gold nanoparticles driven by surface thermodynamic fluctuations and atomic interaction forces. ACS Nano 10, 2893–2902 (2016)
Xing, Y.Q., Wu, Z., Yang, J.J., Wang, X.S., Liu, L.: LIPSS combined with ALD MoS2 nano-coatings for enhancing surface friction and hydrophobic performances. Surf. Coat. Technol. 385, 125396 (2020)
Yang, J.J., Liu, L.: Nanotribological properties of 2-D MoS2 on different substrates made by atomic layer deposition (ALD). Appl. Surf. Sci. 502, 144402 (2020)
Zeng, X.Z., Peng, Y.T., Lang, H.J., Yu, K.: Probing the difference in friction performance between graphene and MoS2 by manipulating the silver nanowires. J. Mater. Sci. 54(1), 540–551 (2019)
Acknowledgements
The authors would like to thank the National Natural Science Foundation of China (52075444, 51675429), the Fundamental Research Funds for the Central Universities (31020190503004), and Key Project of National Natural Science Foundation of China (51535009) for their financial support.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Tong, R., Han, B., Zhang, X. et al. Molecular Dynamics Simulation on Collision Frictional Properties of a Molybdenum Disulfide (MoS2) Film in Microgravity Environment. Microgravity Sci. Technol. 33, 47 (2021). https://doi.org/10.1007/s12217-021-09896-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s12217-021-09896-2