Skip to main content
Log in

Electrohydrodynamic Instability of a Cylindrical Interface: Effect of the Buoyancy Thermo-Capillary in Porous Media

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

Electrohydrodynamics (EHD) instability of a vertical cylindrical interface is tackled in the present study. The interface separates two viscous, homogeneous, porous, incompressible, and dielectric fluids which totate about the common cylindrical axis with different uniform angular velocities. A uniform axial electric field acts upon the considered system. Additionally, the influence of heat transfer is incorporated into the buoyancy term as well as the surface tension parameter, giving rise to the thermo-capillary effect. In this context, the viscous potential theory as well as the standard normal modes analysis are employed. The distributions of temperature, pressure, and velocity fields are evaluated. The linear stability approach resulted in an exceedingly complicated transcendental dispersion relation. The non-dimensional analysis revealed some physical Ohnesorge, Darcy, Rayleigh, Prandtle and Weber numbers. Actually, the dispersion relation has no closed form solution. Consequently, a numerical technique is utilized to display the stability profile. The relation between the growth rate and the wavenumber of the surface waves is constructed. The influences of various physical parameters on the stability profile are illustrated. It is found that the Ohnesorge number plays a dual role in the stability configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Amer, M.F.E., Moatimid, G.M.: Electrohydrodynamic instability of a streaming dielectric viscous liquid jet with mass and heat transfer. Atom. Sprays 29(12), 1087–1108 (2019)

    Article  Google Scholar 

  • Awasthi, M.K., Asthana, R., Agrawal, G.S.: Viscous Potential Flow Analysis of Nonlinear Rayleigh-Taylor Instability with Heat and Mass Transfer. Microgravity Sci. Technol. 24, 351–363 (2012)

    Article  Google Scholar 

  • Bhatti, M.M., Shahid, A., Abbas, T., Alamri, S.Z., Ellahi, R.: Study of Activation Energy on the Movement of Gyrotactic Microorganism in a Magnetized Nanofluids Past a Porous Plate. Processes 8, 328 (2020)

    Article  Google Scholar 

  • Bhatti, M.M., Zeeshand, A., Ellahi, R., Bége, A., Kadire, A.: Effects of coagulation on the two-phase peristaltic pumping of magnetized Prandtl biofluid through an endoscopic annular geometry containing a porous medium. Chinese J. Phys. 58, 222–234 (2019)

    Article  Google Scholar 

  • Bringedal, C., Linear and Nonlinear Convection in Porous Media between Coaxial Cylinders, M. Sc. Thesis (University of Bergen), 13 (2011).

  • Chandrasekhar, S.: The instability of a layer of fluid heated below and subject to Coriolis forces. Proceedings of the Royal Society A (london) 217(1130), 306–327 (1953)

    MathSciNet  MATH  Google Scholar 

  • Chandrasekhar, S., and Elbert, D. D., The instability of a layer of fluid heated below and subject to Coriolis forces. II, Proceedings of the Royal Society A (London), 231 (1185), 1955, 198–210 (1955).

  • Chandrasekhar, S.: Hydrodynamic and Hydrodynamic Stability. Oxford University Press, Oxford (1961)

    MATH  Google Scholar 

  • Cengel, Y. A. (2003). Heat Transfer: A Practical Approach (2nd Ed.), Boston: McGraw-Hill

  • Davis, S.H.: Thermocapillary instabilities. Annu. Rev. Fluid Mech. 19, 403–435 (1987)

    Article  MATH  Google Scholar 

  • Day, Ph., Manz, A., Zhang, Y., Microdroplet Technology: Principles and Emerging Applications in Biology and Chemistry, Springer Science & Business Media, 9–19, (2012)

  • Ellahi, R., Hussain, F., Ishtiaq, F., Hussain, A.: Peristaltic transport of Jeffrey fluid in a rectangular duct through a porous medium under the effect of partial slip: An application to upgrade industrial sieves/filters. Pramana – J. Phys. 93:34, (2019)

  • El-Dib, Y.O., Moatimid, G.M.: On the stability of a rotating electrified liquid jet. Effect of an Axial Electric Field, Physica A 205, 511–527 (1994)

    Google Scholar 

  • El-Dib, Y. O., Moatimid, G. M., and Mady, A. A.: A novelty to the nonlinear rotating Rayleigh -Taylor, Pramana- J Phys. 93: 82 (14 pages) (2019)

  • El-Dib, Y.O., Moatimid, G.M., Mady, A.A.: A nonlinear azimuthal instability of hydromgantic rigid-rotating column. Chinese J. Phys. 66, 285–300 (2020)

    Article  MathSciNet  Google Scholar 

  • El-Dib, Y. O., Moatimid, G. M., Zekry, M. H., Mady, A. A.: Nonlinear hydromagnetic instability of oscillatory rotating rigid-fluid columns. Indian J. Phys. (2021). https://doi.org/10.1007/s12648-021-02022-3

  • El-Sayed, M. F., Moatimid, G. M., Elsabaa, F. M. F., Amer, M. F. E., Electrohydrodynamic instability of a non-Newtonian dielectric liquid jet moving in a streaming dielectric gas with a surface tension gradient. Atomization Sprays, 26 (4), 349–376 (2016a)

  • El-Sayed, M. F., Moatimid, G. M., Elsabaa, F. M. F., Amer, M. F. E., Axisymmetric and asymmetric instabilities of a non-Newtonian liquid jet moving in an inviscid streaming gas through porous media. J. Porous Media, 19 (9), 751–769 (2016b)

  • El-Sayed, M.F., Moatimid, G.M., Elsabaa, F.M.F., Amer, M.F.E.: Three-dimensional instability of non-Newtonian viscoelastic liquid jets issued into a streaming viscous (or inviscid) gas. Int. J. Fluid Mech. Res. 44(2), 93–113 (2017)

    Article  Google Scholar 

  • Favre, E., Blumenfeld, L., Daviaud, F.: Instabilities of a liquid layer locally heated on its free Surface. Phys. Fluids 9, 1473–1475 (1997)

    Article  Google Scholar 

  • Fetecau, C., Ellahi, R., Sait, S.M.: Mathematical Analysis of Maxwell Fluid Flow through a Porous Plate Channel Induced by a Constantly Accelerating or Oscillating Wall. Mathematics 9, 90 (2021)

    Article  Google Scholar 

  • Fu, Q.F., Deng, X.D., Jia, B.Q., Yang, L.J.: Temporal instability of a confined liquid film with mass and heat transfer. AIAA 56(7), 2615–2622 (2018)

    Article  Google Scholar 

  • Funada, T., Joseph, D.D.: Viscous potential flow analysis of Kelvin-Helmholtz instability in a channel. J. Fluid Mech. 445, 263–283 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Funada, T., Joseph, D.D.: Viscous potential flow analysis of capillary instability. International J. Multiphase Flow 28(9), 1459–1478 (2002)

    Article  MATH  Google Scholar 

  • Funada, T., Joseph, D.D.: Viscoelastic potential flow analysis of capillary instability. J. Non- Newtonian Fluid Mech. 111(2–3), 87–105 (2003)

    Article  MATH  Google Scholar 

  • Gaster, M.: A note on the relation between temporally - increasing and spatially - increasing disturbances in hydrodynamic stability. J. Fluid Mech. 14(2), 222–224 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  • Grigoriev, R.O., Qin, T.: The effect of phase change in stability of convective flow in a layer of volatile liquid driven by a horizontal temperature gradient. J. Fluid Mech. 838, 248–283 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Gawas, S.B., Ingole, S.B.: Heat transfer through porous medium: A Review. Int. J. Res. App. Sci. Eng. Tech. 4, 343–349 (2016)

    Google Scholar 

  • Hopfinger, E.J.: Rotating Fluids in Geophysical and Industrial Applications. Springer-Verlag, Wien, France (1992)

    Book  Google Scholar 

  • Hsieh, D.Y.: Effects of heat and mass transfer on Rayleigh-Taylor instability. J. Basic. Eng. 94, 156–159 (1972)

    Article  Google Scholar 

  • Hsieh, D.Y.: Interfacial stability with mass and heat transfer. Phys. Fluids 21, 745–748 (1978)

    Article  MATH  Google Scholar 

  • Hewitt, G.F., Shires, G.L., Bott, T.R.: Process Heat Transfer. CRC Press McGill University, Montereal, Canada (1994)

    Google Scholar 

  • Kowal, K.N., Davis, S.H., Voorhees, P.W.: Thermocapillary instabilities in a horizontal liquid layer under partial basal slip. J. Fluid Mech. 855, 839–859 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, X.: Mechanism of Atomization of a Liquid Jet. Atom. Sprays 5, 89–105 (1995)

    Article  Google Scholar 

  • Melcher, J.R.: Field Coupled Surface Waves. MIT Press, Cambridge (1963)

    Google Scholar 

  • Mercier, J.F., Normand, C.: Buoyant thermocapillary instabilities of differentially heated liquid layers. Phys. Fluids 8, 1433 (1996)

    Article  MATH  Google Scholar 

  • Moatimid, G.M.: The effect of a time harmonic-magnetic field on the stability of cylindrical ferrofluids in the presence of heat and mass transfer. Can. J. Phys. 73(9–10), 595–601 (1995)

    Article  Google Scholar 

  • Moatimid, G. M., Amer, M. F. E.: EHD instability of two rigid rotating dielectric columns in porous media, Pramana-J. Phys. 95:47 (2021). https://doi.org/10.1007/s12043-021-02078-0

  • Moatimid, G.M., El-Dib, Y.O., Zekry, M.H.: Stability analysis using multiple scale homotopy approach of coupled interfaces under the influence of periodic fields. Chinese J. Phys. 56, 2507–2522 (2018)

    Article  Google Scholar 

  • Moatimid, G.M., Eldabe, N.T., Sayed, A.: The effect of a periodic tangential magnetic field on the stability of a horizontal magnetic sheet. Heat Transfer-Asian Res. 48, 4074–4104 (2019)

    Article  Google Scholar 

  • Moatimid, G. M., Hassan, M. A., Three - dimensional viscous potential electrohydrodynamic Kelvin–Helmholtz instability through vertical cylindrical porous inclusions with permeable boundaries, J. Fluids Eng. 136 (2), 021203, 1–10 (2014).

  • Moatimid, G.M., Hassan, M.A.: Viscous potential flow of electrohydrodynamic Kelvin-Helmholtz instability through two porous layers with suction/injection effect. Int. J. Eng. Sci. 54, 15–26 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Moatimid, G.M., Hassan, M.A., Mohamed, A.A.M.: Temporal instability of a confined nano-liquid film with the Marangoni convection effect: viscous potential theory. Microsyst. Technol. 26, 2123–2136 (2020)

    Article  Google Scholar 

  • Moatimid, G.M., Obied Allah, M.H., Hassan, M.A.: Kelvin-Helmholtz instability for flow in porous media under the influence of oblique magnetic fields: A viscous potential flow analysis. Phys. Plasmas 20, 102111 (2013)

    Article  Google Scholar 

  • Moatimid, G.M., Zekry, M.H.: Nonlinear stability analysis of coupled azimuthal interfaces between three rotating magnetic fluids. Pramana-J. Phys. 94, 115 (2020a)

    Article  Google Scholar 

  • Moatimid, G.M., Zekry, M.H.: Nonlinear stability of elecro-visco-elastic Walters’ B type in porous media. Microsyst. Technol. 26, 2013–2027 (2020b)

    Article  Google Scholar 

  • Nayak, A.R., Chakraborty, B.B.: Kelvin-Helmholtz stability with mass and heat transfer. Phys. Fluids 27(8), 1937–1941 (1984)

    Article  MATH  Google Scholar 

  • Parmentier, P.M., Regnier, V.C., Lebon, G.: Buoyant thermocapillary instabilities in medium Prandtl number fluid layers subject to a horizontal temperature gradient. Int. J. Heat Mass Transfer 36, 2417–2427 (1993)

    Article  MATH  Google Scholar 

  • Rajan, V.K., Chandramouli, V., Seshadri, S., Muniyandi, V.: Electrohydrodynamic Effects on Single Bubble Growth and Departure under Microgravity Conditions: a Numerical Investigation. Microgravity Sci. Technol. 31, 805–819 (2019)

    Article  Google Scholar 

  • Rana, G.C., Chand, R., Sharma, V.: Electrohydrodynamic Instability of a Rotating Walters’ (model B’) Fluid in a Porous Medium: Brinkman model. Mech. Mech. Eng. 23, 138–143 (2019)

    Article  Google Scholar 

  • Siddheshwar, P.G., Uma, D., Bhavy, S.: Effects of variable viscosity and temperature modulation on linear Rayleigh-Bènard convection in Newtonian dielectric liquid. Appl. Math. Mech. (english Edition) 40(11), 1601–1614 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Sirwah, M.A., Assaf, A.: Dynamics of an Electrified Multi-layer Film Down a Porous Incline. Microgravity Sci. Technol. 32, 1211–1236 (2020)

    Article  Google Scholar 

  • Stojanovic, M., Kuhlmann, H.C.: Stability of Thermocapillary Flow in High-Prandtl-Number Liquid Bridges Exposed to a Coaxial Gas Stream. Microgravity Sci. Technol. 32, 953–959 (2020)

    Article  Google Scholar 

  • Taylor, G.I.: Stability of a viscous liquid contained between two rotating cylinders. Philos. Trans. R. Soc. A 223, 289–343 (1923)

    MATH  Google Scholar 

  • Wang, R., Bai, Sh.: Modeling and experimental analysis of thermocapillary effect on laser grooved surfaces at high temperature. Appl. Surf. Sci. 465, 41–47 (2019)

    Article  Google Scholar 

  • Yan, Ch., Hu K., Chen, Qi., Thermocapillary instabilities of liquid layers on an inclined plane. Phys. Fluids, 30, 082101 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mona A. A. Mohamed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The constants that appearing in Eq. (20) may be listed as:

$${a_{11}} = \frac{{\Delta_1}}{\Delta }{T_0},\;\;\; {a_{12}} = \left( {\frac{{{T_a}\Delta - {\Delta_1}{I_m}({s_1}a)}}{{\Delta {K_m}({s_1}a)}}} \right){T_0},\;\;\; {a_{21}} = \frac{{\Delta_2}}{\Delta }{T_0},\qquad and \qquad {a_{22}} = \left( {\frac{{{T_b}\Delta - {\Delta_2}{I_m}({s_2}b)}}{{\Delta {K_m}({s_2}b)}}} \right){T_0},$$

where

$$\begin{aligned}{\Delta_1} =&\; \left( {s{k_f}\left({\frac{{{T_b}{K_m}({s_2}R)}}{{{K_m}({s_2}b)}} - \frac{{{T_a}{K_m}({s_1}R)}}{{{K_m}({s_1}a)}}} \right)\left( {\frac{{{I_m}({s_2}b)K_m^{^{\prime}}({s_2}R) - {K_m}({s_2}b)I_m^{^{\prime}}({s_2}R)}}{{{K_m}({s_2}b)}}} \right) } \right. \\& \left.- {\left( {\frac{{{T_b}s{k_f}K_m^{^{\prime}}({s_2}R)}}{{{K_m}({s_2}b)}} - \frac{{{T_a}K_m^{^{\prime}}({s_1}R)}}{{{K_m}({s_1}a)}}} \right)\left( {\frac{{{I_m}({s_2}b){K_m}({s_2}R) - {K_m}({s_2}b){I_m}({s_2}R)}}{{{K_m}({s_2}b)}}} \right)} \right),\end{aligned}$$
$$\begin{aligned} {\Delta_2} = \left( {\left( {\frac{{{T_b}s{k_f}K_m^{^{\prime}}({s_2}R)}}{{{K_m}({s_2}b)}} - \frac{{{T_a}K_m^{^{\prime}}({s_1}R)}}{{{K_m}({s_1}a)}}} \right)\left( {\frac{{{I_m}({s_1}R){K_m}({s_1}a) - {K_m}({s_1}R){I_m}({s_1}a)}}{{{K_m}({s_1}a)}}} \right)} \right. \hfill \\ \left. \,\,\,\, {-} {\left( {\frac{{{T_b}{K_m}({s_2}R)}}{{{K_m}({s_2}b)}} - \frac{{{T_a}{K_m}({s_1}R)}}{{{K_m}({s_1}a)}}} \right)\left( {\frac{{{K_m}({s_1}a)I_m^{^{\prime}}({s_1}R) - {I_m}({s_1}a)K_m^{^{\prime}}({s_1}R)}}{{{K_m}({s_1}a)}}} \right)} \right)\,\,\,\,, \hfill \\ \end{aligned}$$
$$\begin{aligned} \triangle=sk_f\left(\frac{I_m\left(s_2R\right)K_m\left(s_1a\right)-K_m\left(s_1R\right)I_m\left(s_1a\right)}{K_m\left(s_1a\right)}\right)\left(\frac{I_m\left(s_2b\right)K{_{m}^{\prime}}\left(s_2R\right)-K_m\left(s_2b\right)I{_{m}^{\prime}}\left(s_2R\right)}{K_m\left(s_2b\right)}\right)-\\ \left(\frac{I_m\left(s_2b\right)K_m\left(s_2R\right)-K_m\left(s_2b\right)I_m\left(s_2R\right)}{K_m\left(s_2b\right)}\right)\left(\frac{K_m\left(s_1a\right)I{_{m}^{\prime}}\left(s_1R\right)-I_m\left(s_1a\right)K{_{m}^{\prime}}\left(s_1R\right)}{K_m\left(s_1a\right)}\right) \cdot \end{aligned}$$

The constants that appearing in Eq. (21) may be listed as:

$$\begin{aligned}b_{11}=&\frac{\sigma_0}{R^2}\left(\frac{iR^2z^2Ra}{k\Pr}\right)\left(\frac{q_1^2}{s_1^2-q_1^2}\right)\frac{\Delta_{1a}}{\Delta_a}\eta_0,\qquad\qquad\qquad\qquad &b_{12}=-\frac{\sigma_0}{R^2}\left(\frac{iR^2z^2Ra}{k\Pr}\right)\left(\frac{q_1^2}{s_1^2-q_1^2}\right)\frac{\Delta_{2a}}{\Delta_a}\eta_0\;,\\ b_{21}=&\frac{\sigma_0}{R^2}\left(\frac{i\rho_0\beta R^2z^2Ra}{k\Pr}\right)\left(\frac{q_2^2}{s_2^2-q_2^2}\right)\frac{\Delta_{1b}}{\Delta_b}\eta_0,\qquad\qquad\mathrm{and}\qquad\qquad &b_{22}=-\frac{\sigma_0}{R^2}\left(\frac{i\rho_0\beta R^2z^2Ra}{k\Pr}\right)\left(\frac{q_2^2}{s_2^2-q_2^2}\right)\frac{\Delta_{2b}}{\Delta_b}\eta_0\;,\end{aligned}$$

where

$${\begin{aligned} {\Delta_{1a}} =&\; \left( {\frac{{{\omega_1}{s_1}R}}{{4i\sqrt {We} }}\left( {\frac{{\Delta_1}}{\Delta }I_m^{^{\prime}}({s_1}R) + \left( {\frac{{{T_a}\Delta - {\Delta_1}{I_m}({s_1}a)}}{{\Delta {K_m}({s_1}a)}}} \right)K_m^{^{\prime}}({s_1}R)} \right) + m\left( {\frac{{\Delta_1}}{\Delta }{I_m}({s_1}R) + \left( {\frac{{{T_a}\Delta - {\Delta_1}{I_m}({s_1}a)}}{{\Delta {K_m}({s_1}a)}}} \right){K_m}({s_1}R)} \right)} \right. \\& \left. { - \frac{{kR(s_1^2 - q_1^2)(\omega + im\sqrt {We} )(\omega_1^2 + 16We)\Pr }}{{4\sqrt {We} q_1^2{Z^2}Ra}}} \right)\left( {\frac{{{\omega_1}{q_1}aK_m^{^{\prime}}({q_1}a)}}{{4i\sqrt {We} }} + mK{}_m({q_1}a)} \right) - \left( {\frac{{{\omega_1}{q_1}RK_m^{^{\prime}}({q_1}R)}}{{4i\sqrt {We} }} + mK{}_m({q_1}R)} \right) \\& \times \left( {\frac{{{\omega_1}{s_1}a}}{{4i\sqrt {We} }}\left( {\frac{{\Delta_1}}{\Delta }I_m^{^{\prime}}({s_1}a) + \left( {\frac{{{T_a}\Delta - {\Delta_1}{I_m}({s_1}a)}}{{\Delta {K_m}({s_1}a)}}} \right)K_m^{^{\prime}}({s_1}a)} \right) + m{T_a}} \right)\;, \end{aligned}}$$
$$\begin{aligned} {\Delta_{2a}} =&\; \left( {\frac{{{\omega_1}{s_1}R}}{{4i\sqrt {We} }}\left( {\frac{{\Delta_1}}{\Delta }I_m^{^{\prime}}({s_1}R) + \left( {\frac{{{T_a}\Delta - {\Delta_1}{I_m}({s_1}a)}}{{\Delta {K_m}({s_1}a)}}} \right)K_m^{^{\prime}}({s_1}R)} \right) + m\left( {\frac{{\Delta_1}}{\Delta }{I_m}({s_1}R) + \left( {\frac{{{T_a}\Delta - {\Delta_1}{I_m}({s_1}a)}}{{\Delta {K_m}({s_1}a)}}} \right){K_m}({s_1}R)} \right)} \right. \\& \left. { - \frac{{kR(s_1^2 - q_1^2)(\omega + im\sqrt {We} )(\omega_1^2 + 16We)\Pr }}{{4\sqrt {We} q_1^2{Z^2}Ra}}} \right)\left( {\frac{{{\omega_1}{q_1}aI_m^{^{\prime}}({q_1}a)}}{{4i\sqrt {We} }} + mI{}_m({q_1}a)} \right) - \left( {\frac{{{\omega_1}{q_1}RI_m^{^{\prime}}({q_1}R)}}{{4i\sqrt {We} }} + mI{}_m({q_1}R)} \right) \\& \times \left( {\frac{{{\omega_1}{s_1}a}}{{4i\sqrt {We} }}\left( {\frac{{\Delta_1}}{\Delta }I_m^{^{\prime}}({s_1}a) + \left( {\frac{{{T_a}\Delta - {\Delta_1}{I_m}({s_1}a)}}{{\Delta {K_m}({s_1}a)}}} \right)K_m^{^{\prime}}({s_1}a)} \right) + m{T_a}} \right), \end{aligned}$$
$$\begin{aligned} {\Delta_a} =&\; \left( {\frac{{{\omega_1}{q_1}aI_m^{^{\prime}}({q_1}a)}}{{4i\sqrt {We} }} + mI{}_m({q_1}a)} \right)\left( {\frac{{{\omega_1}{q_1}RK_m^{^{\prime}}({q_1}R)}}{{4i\sqrt {We} }} + mK{}_m({q_1}R)} \right) \\& - \left( {\frac{{{\omega_1}{q_1}aK_m^{^{\prime}}({q_1}a)}}{{4i\sqrt {We} }} + mK{}_m({q_1}a)} \right) \times \left( {\frac{{{\omega_1}{q_1}RI_m^{^{\prime}}({q_1}R)}}{{4i\sqrt {We} }} + mI{}_m({q_1}R)} \right), \end{aligned}$$
$${\begin{aligned} {\Delta_{1b}} =&\; \left( {\frac{{{\omega_2}{s_2}R}}{{4i\sqrt {We} }}\left( {\frac{{\Delta_2}}{\Delta }I_m^{^{\prime}}({s_2}R) + \left( {\frac{{{T_b}\Delta - {\Delta_2}{I_m}({s_2}b)}}{{\Delta {K_m}({s_2}b)}}} \right)K_m^{^{\prime}}({s_2}R)} \right) + m\left( {\frac{{\Delta_2}}{\Delta }{I_m}({s_2}R) + \left( {\frac{{{T_b}\Delta - {\Delta_2}{I_m}({s_2}b)}}{{\Delta {K_m}({s_2}b)}}} \right){K_m}({s_2}R)} \right)} \right. \\& \left. { - \frac{{kR(s_2^2 - q_2^2)(\omega + im\Omega\sqrt {We} )(\omega_2^2 + 16\Omega^2 We)\Pr }}{{4\beta\Omega\sqrt {We} q_2^2{Z^2}Ra}}} \right)\left( {\frac{{{\omega_2}{q_2}bK_m^{^{\prime}}({q_2}b)}}{{4i\Omega\sqrt {We} }} + mK{}_m({q_2}b)} \right) - \left( {\frac{{{\omega_2}{q_2}RK_m^{^{\prime}}({q_2}R)}}{{4i\Omega\sqrt {We} }} + mK{}_m({q_2}R)} \right) \\& \times \left( {\frac{{{\omega_2}{s_2}b}}{{4i\Omega\sqrt {We} }}\left( {\frac{{\Delta_2}}{\Delta }I_m^{^{\prime}}({s_2}b) + \left( {\frac{{{T_b}\Delta - {\Delta_2}{I_m}({s_2}b)}}{{\Delta {K_m}({s_2}b)}}} \right)K_m^{^{\prime}}({s_2}b)} \right) + m{T_b}} \right), \end{aligned}}$$
$${\begin{aligned} {\Delta_{2b}} =&\; \left( {\frac{{{\omega_2}{s_2}R}}{{4i\Omega\sqrt {We} }}\left( {\frac{{\Delta_2}}{\Delta }I_m^{^{\prime}}({s_2}R) + \left( {\frac{{{T_b}\Delta - {\Delta_2}{I_m}({s_2}b)}}{{\Delta {K_m}({s_2}b)}}} \right)K_m^{^{\prime}}({s_2}R)} \right) + m\left( {\frac{{\Delta_2}}{\Delta }{I_m}({s_2}R) + \left( {\frac{{{T_b}\Delta - {\Delta_2}{I_m}({s_2}b)}}{{\Delta {K_m}({s_2}b)}}} \right){K_m}({s_2}R)} \right)} \right. \\& \left. { - \frac{{kR(s_2^2 - q_2^2)(\omega + im\Omega\sqrt {We} )(\omega_2^2 + 16\Omega^2 We)\Pr }}{{4\beta\Omega\sqrt {We} q_2^2{Z^2}Ra}}} \right)\left( {\frac{{{\omega_2}{q_2}bI_m^{^{\prime}}({q_2}b)}}{{4i\Omega\sqrt {We} }} + mI{}_m({q_2}b)} \right) - \left( {\frac{{{\omega_2}{q_2}RI_m^{^{\prime}}({q_2}R)}}{{4i\Omega\sqrt {We} }} + mI{}_m({q_2}R)} \right) \\& \times \left( {\frac{{{\omega_2}{s_2}b}}{{4i\Omega\sqrt {We} }}\left( {\frac{{\Delta_2}}{\Delta }I_m^{^{\prime}}({s_2}b) + \left( {\frac{{{T_b}\Delta - {\Delta_2}{I_m}({s_2}b)}}{{\Delta {K_m}({s_2}b)}}} \right)K_m^{^{\prime}}({s_2}b)} \right) + m{T_b}} \right), \end{aligned}}$$

and

$$\begin{aligned} \Delta_{b} =&\; \left( {\frac{{\omega_{2} q_{2} bI_{m}^{^{\prime}} (q_{2} b)}}{{4i\Omega \sqrt {We} }} + mI{}_{m}(q_{2} b)} \right)\left( {\frac{{\omega_{2} q_{2} RK_{m}^{^{\prime}} (q_{2} R)}}{{4i\Omega \sqrt {We} }} + mK{}_{m}(q_{2} R)} \right) \\&- \left( {\frac{{\omega_{2} q_{2} bK_{m}^{^{\prime}} (q_{2} b)}}{{4i\Omega \sqrt {We} }} + mK{}_{m}(q_{2} b)} \right) \times \left( {\frac{{\omega_{2} q_{2} RI_{m}^{^{\prime}} (q_{2} R)}}{{4i\Omega \sqrt {We} }} + mI{}_{m}(q_{2} R)} \right) \end{aligned}$$

The constants that appear in Eq. (29) may be written as: 

$$\begin{aligned} {c_{11}} = \left( {\frac{{ - i{E_0}(1 - \varepsilon ){f_2}}}{{{d_1}{f_2} - \varepsilon {d_2}{f_1}}}} \right){\eta_0}, \qquad\qquad\qquad\qquad\;\;\;\;\;\; {c_{12}} = \frac{I_m^{^{\prime}}(ka)}{{K_m^{^{\prime}}(ka)}}\left( {\frac{{i{E_0}(1 - \varepsilon ){f_2}}}{{{d_1}{f_2} - \varepsilon {d_2}{f_1}}}} \right){\eta_0},\\ {c_{21}} = \left( {\frac{{ - i{E_0}(1 - \varepsilon ){f_1}}}{{{d_1}{f_2} - \varepsilon {d_2}{f_1}}}} \right){\eta_0}, \qquad\qquad \mathrm{and} \qquad\qquad {c_{22}} = \frac{{{{I^{\prime}}_m}\left( {kb} \right)}}{{{{K^{\prime}}_m}\left( {kb} \right)}}\left( {\frac{{i{E_0}\left( {1 - \varepsilon } \right){f_1}}}{{{d_1}{f_2} - \varepsilon {d_2}f}}} \right){\eta_0}, \end{aligned}$$

where.

$$\begin{aligned} {f_1} = \frac{{{I_m}(kR)K_m^{^{\prime}}(ka) - {K_m}(kR)I_m^{^{\prime}}(ka)}}{K_m^{^{\prime}}(ka)}, \qquad\qquad\qquad\qquad\qquad\;\; {f_2} = \frac{{{I_m}\left( {kR} \right){{K^{\prime}}_m}\left( {kb} \right) - {K_m}\left( {kR} \right){{I^{\prime}}_m}\left( {kb} \right)}}{{{{K^{\prime}}_m}\left( {kb} \right)}}, \\ {d_1} = \frac{{{{I^{\prime}}_m}\left( {kR} \right){{K^{\prime}}_m}\left( {ka} \right) - {{K^{\prime}}_m}\left( {kR} \right){{I^{\prime}}_m}\left( {ka} \right)}}{{{{K^{\prime}}_m}\left( {ka} \right)}},\qquad\qquad and \qquad\qquad {d_2} = \frac{I_m^{^{\prime}}(kR)K_m^{^{\prime}}(kb) - K_m^{^{\prime}}(kR)I_m^{^{\prime}}(kb)}{{K_m^{^{\prime}}(kb)}}. \end{aligned}$$

The quantities that appear in Eq. (41) may be written as:

$${\begin{aligned} {Q_1} =& \frac{{{\omega_1}{R^2}}}{{4i\sqrt {We} }}\left( {q_1^2\left( {\frac{{{\Delta_{1a}}I_m^{^{\prime\prime}}({q_1}R) - {\Delta_{2a}}K_m^{^{\prime\prime}}({q_1}R)}}{{\Delta_a}}} \right) + s_1^2\left( {\frac{{\Delta_1}}{\Delta }I_m^{^{\prime\prime}}({s_1}R) + \left( {\frac{{{T_a}\Delta - {\Delta_1}{I_m}({s_1}a)}}{{\Delta {K_m}({s_1}a)}}} \right)K_m^{^{\prime\prime}}({s_1}R)} \right)} \right) \hfill \\& + mR\left( {{q_1}\left( {\frac{{{\Delta_{1a}}I_m^{^{\prime}}({q_1}R) - {\Delta_{2a}}K_m^{^{\prime}}({q_1}R)}}{{\Delta_a}}} \right) + {s_1}\left( {\frac{{\Delta_1}}{\Delta }I_m^{^{\prime}}({s_1}R) + \left( {\frac{{{T_a}\Delta - {\Delta_1}{I_m}({s_1}a)}}{{\Delta {K_m}({s_1}a)}}} \right)K_m^{^{\prime}}({s_1}R)} \right)} \right) \hfill \\& - m\left( {\left( {\frac{{{\Delta_{1a}}{I_m}({q_1}R) - {\Delta_{2a}}{K_m}({q_1}R)}}{{\Delta_a}}} \right) + \left( {\frac{{\Delta_1}}{\Delta }{I_m}({s_1}R) + \left( {\frac{{{T_a}\Delta - {\Delta_1}{I_m}({s_1}a)}}{{\Delta {K_m}({s_1}a)}}} \right){K_m}({s_1}R)} \right)} \right) \hfill \\ \end{aligned}}{\mathrm {and}}$$
$$\begin{aligned} {Q_2} =& \frac{{{\omega_2}{R^2}}}{{4i\Omega \sqrt {We} }}\left( {q_2^2\left( {\frac{{{\Delta_{1b}}I_m^{^{\prime\prime}}({q_2}R) - {\Delta_{2b}}K_m^{^{\prime\prime}}({q_2}R)}}{{\Delta_b}}} \right) + s_2^2\left( {\frac{{\Delta_2}}{\Delta }I_m^{^{\prime\prime}}({s_2}R) + \left( {\frac{{{T_b}\Delta - {\Delta_2}{I_m}({s_2}b)}}{{\Delta {K_m}({s_2}b)}}} \right)K_m^{^{\prime\prime}}({s_2}R)} \right)} \right) \hfill \\& + mR\left( {{q_2}\left( {\frac{{{\Delta_{1b}}I_m^{^{\prime}}({q_2}R) - {\Delta_{2b}}K_m^{^{\prime}}({q_2}R)}}{{\Delta_b}}} \right) + {s_2}\left( {\frac{{\Delta_2}}{\Delta }I_m^{^{\prime}}({s_2}R) + \left( {\frac{{{T_b}\Delta - {\Delta_2}{I_m}({s_2}b)}}{{\Delta {K_m}({s_2}b)}}} \right)K_m^{^{\prime}}({s_2}R)} \right)} \right) \hfill \\& - m\left( {\left( {\frac{{{\Delta_{1b}}{I_m}({q_2}R) - {\Delta_{2b}}{K_m}({q_2}R)}}{{\Delta_b}}} \right) + \left( {\frac{{\Delta_2}}{\Delta }{I_m}({s_2}R) + \left( {\frac{{{T_b}\Delta - {\Delta_2}{I_m}({s_2}b)}}{{\Delta {K_m}({s_2}b)}}} \right){K_m}({s_2}R)} \right)} \right) \hfill \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moatimid, G.M., Amer, M.F.E. & Mohamed, M.A.A. Electrohydrodynamic Instability of a Cylindrical Interface: Effect of the Buoyancy Thermo-Capillary in Porous Media. Microgravity Sci. Technol. 33, 52 (2021). https://doi.org/10.1007/s12217-021-09885-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12217-021-09885-5

Keywords

Navigation