Abstract
A large amount of heat can be dissipated more efficiently by utilizing the latent heat than the sensible heat of coolant using condensation technique. In addition, cooling by microchannel is found as a promising method to dissipate more heat than the conventional channel. The application of condensation in a microchannel under different gravity conditions becomes very important due to rising demand in space technology, where compact high-performance electronic devices experience rise in temperature beyond the tolerable limit. The present numerical model explores the effect of different gravity conditions on the fluid flow and heat transfer characteristics of R134a condensation in a two-dimensional microchannel with a diameter of 100 µm. The gravity condition is varied from zero to normal gravity as g = 0, 0.1, 0.5, 1 and 9.81 m/s2. Moreover, the effects of subcooled wall temperature, mass flux and vapour quality on two phase flow regimes, flow characteristics, temperature distribution, local and average Nusselt number behaviour are also investigated. The flow regime is significantly influenced by the gravity, wall temperature, mass flux and vapour quality and accordingly, different flow regimes are observed. The flow behaviour and temperature contour are also prominently dependent on the working parameters. The gravity condition has found to insignificantly affect the average condensation heat transfer properties in the considered microchannel.
Similar content being viewed by others
Abbreviations
- A :
-
Area, m2
- Cp :
-
Specific heat at constant pressure, J/kgK
- D :
-
Depth of the channel, m
- G :
-
Mass flux, kg/m2s
- g :
-
Gravity, m/s2
- h :
-
heat transfer coefficient, W/m2K
- h e :
-
Specific Enthalpy (kJ/kg)
- h L :
-
Latent heat of vapourization, J/kg
- h wall,x :
-
Local heat transfer coefficient, W/m2K
- h avg :
-
Average heat transfer coefficient, W/m2K
- k :
-
Thermal conductivity, W/mK
- L :
-
Length of the channel, m
- ṁ :
-
Mass flow rate, kg/s
- Nu loc :
-
Average Nusselt number
- Nu avg :
-
Average Nusselt number
- p :
-
Pressure, Pa
- q″ wall,x :
-
Local heat flux, W/m2
- q″ avg :
-
Average heat flux, W/m2
- T :
-
Temperature, k
- t :
-
Time, s
- u :
-
Velocity, m/s
- x v :
-
Vapour quality
- x, y :
-
Coordinates
- \(\mu\) :
-
Viscosity, Pa.s
- \(\rho\) :
-
Density, kg/m3
- \(\sigma\) :
-
Surface tension, N/m
- \(\varnothing\) :
-
Volume fraction
- cell :
-
Computational cell
- in :
-
Inlet
- sat :
-
Saturation
- l :
-
liquid
- v :
-
vapour
- wall :
-
Wall
References
Akhavan-Behabadi, M., Kumar, R., Mohseni, S.: Condensation heat transfer of R-134a inside a microfin tube with different tube inclinations. Int. J. Heat Mass Transf. 50(23–24), 4864–4871 (2007). https://doi.org/10.1016/j.ijheatmasstransfer.2007.02.030
Al-Hajri, E., Shooshtari, A.H., Dessiatoun, S., Ohadi, M.M.: Performance characterization of R134a and R245fa in a high aspect ratio microchannel condenser. Int. J. Refrig 36(2), 588–600 (2013). https://doi.org/10.1016/j.ijrefrig.2012.10.007
Al-Zaidi, A.H., Mahmoud, M.M., Karayiannis, T.G.: Condensation flow patterns and heat transfer in horizontal microchannels. Exp. Thermal Fluid Sci. 90, 153–173 (2018). https://doi.org/10.1016/j.expthermflusci.2017.09.009
Albers, J.A., Macosko, R.P.: Condensation pressure drop of nonwetting mercury in a uniformly tapered tube in 1-g and zero-gravity environments. In. National Aeronautics and Space Administration Cleveland oh Lewis Research Center (1966)
Bai, C., Qiu, Y., Leng, X., Zhang, G., Tian, M.: Diverging/converging small channel for condensation heat transfer enhancement under different gravity conditions. Int. Commun. Heat Mass Transfer 116, 104714 (2020)
Bohdal, T., Charun, H., Sikora, M.l.: Comparative investigations of the condensation of R134a and R404A refrigerants in pipe minichannels. Int. J. Heat Mass Trans. 54(9–10), 1963–1974 (2011). https://doi.org/10.1016/j.ijheatmasstransfer.2011.01.005
Bortolin, S., El Achkar, G., Kostoglou, M., Glushchuk, A., Karapantsios, T.D., Lavieille, P., Del Col, D., Buffone, C., Miscevic, M., Toth, B.: others: Experimental investigations on condensation in the framework of enhanced condensers in microgravity (ENCOM-2) project. Microgravity Sci. Technol. 26(5), 335–349 (2014). https://doi.org/10.1007/s12217-014-9402-0
Brackbill, J.U., Kothe, D.B., Zemach, C.: A continuum method for modeling surface tension. J. Comput. Phys. 100(2), 335–354 (1992). https://doi.org/10.1016/0021-9991(92)90240-Y
Chen, S., Yang, Z., Duan, Y., Chen, Y., Wu, D.: Simulation of condensation flow in a rectangular microchannel. Chem. Eng. Process. 76, 60–69 (2014). https://doi.org/10.1016/j.cep.2013.12.004
Chen, Y., Shi, M., Cheng, P., Peterson, G.: Condensation in microchannels. Nanoscale Microscale Thermophys. Eng. 12(2), 117–143 (2008). https://doi.org/10.1080/15567260701866702
Da Riva, E., Del Col, D.: Effect of gravity during condensation of R134a in a circular minichannel. Microgravity Sci. Technol. 23(1), 87 (2011). https://doi.org/10.1007/s12217-011-9275-4
Da Riva, E., Del Col, D.: Numerical simulation of laminar liquid film condensation in a horizontal circular minichannel. J. Heat Trans. 134(5), (2012). https://doi.org/10.1115/1.4005710
Del Col, D., Bortolato, M., Azzolin, M., Bortolin, S.: Effect of inclination during condensation inside a square cross section minichannel. Int. J. Heat Mass Transf. 78, 760–777 (2014). https://doi.org/10.1016/j.ijheatmasstransfer.2014.06.078
Del Col, D., Bortolato, M., Azzolin, M., Bortolin, S.: Condensation heat transfer and two-phase frictional pressure drop in a single minichannel with R1234ze (E) and other refrigerants. Int. J. Refrig 50, 87–103 (2015). https://doi.org/10.1016/j.ijrefrig.2014.10.022
Del Col, D., Bortolin, S., Da Riva, E.: Encyclopedia of two-phase heat transfer and flow: Special topics and applications Prediction Methods and Numerical Modeling of Condensation Heat Transfer in Minichannels, chapter three. World Scientific Publishing Co., Singapore (2016)
Ding, Y., Jia, L.: Study on flow condensation characteristics of refrigerant R410a in a single rectangular micro-channel. Int. J. Heat Mass Transf. 114, 125–134 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.013
El Mghari, H., Louahlia-Gualous, H.: Experimental and numerical investigations of local condensation heat transfer in a single square microchannel under variable heat flux. Int. Commun. Heat Mass Transfer 71, 197–207 (2016). https://doi.org/10.1016/j.icheatmasstransfer.2015.12.021
Ewim, D., Adelaja, A., Onyiriuka, E., Meyer, J., Huan, Z.: Modelling of heat transfer coefficients during condensation inside an enhanced inclined tube. J. Therm. Anal. Calor. 1–13 (2020)
Ewim, D., Meyer, J.P., Abadi, S.N.R.: Condensation heat transfer coefficients in an inclined smooth tube at low mass fluxes. Int. J. Heat Mass Transf. 123, 455–467 (2018)
Ganapathy, H., Shooshtari, A., Choo, K., Dessiatoun, S., Alshehhi, M., Ohadi, M.: Volume of fluid-based numerical modeling of condensation heat transfer and fluid flow characteristics in microchannels. Int. J. Heat Mass Transf. 65, 62–72 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2013.05.044
Garimella, S.: Condensation flow mechanisms in microchannels: basis for pressure drop and heat transfer models. In: International Conference on Nanochannels, Microchannels, and Minichannels 2003, pp. 181–192
Goss, G., Jr., Oliveira, J., Passos, J.: Pressure drop during condensation of R-134a inside parallel microchannels. Int. J. Refrig 56, 114–125 (2015). https://doi.org/10.1016/j.ijrefrig.2015.04.005
Goss, G., Jr., Passos, J.: Heat transfer during the condensation of R134a inside eight parallel microchannels. Int. J. Heat Mass Transf. 59, 9–19 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.014
Greenshields, C.J.: OpenFOAM user guide. OpenFOAM Foundation Ltd, version 3(1), e2888 (2015)
Gu, X., Wen, J., Tian, J., Li, C., Liu, H., Wang, S.: Role of gravity in condensation flow of R1234ze (E) inside horizontal mini/macro-channels. Experimental and Computational Multiphase Flow 1(3), 219–229 (2019)
Gu, X., Wen, J., Wang, C., Zhang, X., Wang, S., Tu, J.: Condensation flow patterns and model assessment for R1234ze (E) in horizontal mini/macro-channels. Int. J. Therm. Sci. 134, 140–159 (2018). https://doi.org/10.1016/j.ijthermalsci.2018.08.006
Jige, D., Inoue, N., Koyama, S.: Condensation of refrigerants in a multiport tube with rectangular minichannels. Int. J. Refrig 67, 202–213 (2016). https://doi.org/10.1016/j.ijrefrig.2016.03.020
Jige, D., Kikuchi, S., Eda, H., Inoue, N., Koyama, S.: Two-phase flow characteristics of R32 in horizontal multiport minichannels: Flow visualization and development of flow regime map. Int. J. Refrig 95, 156–164 (2018). https://doi.org/10.1016/j.ijrefrig.2018.09.005
Karayiannis, T., Mahmoud, M.: Flow boiling in microchannels: Fundamentals and applications. Appl. Therm. Eng. 115, 1372–1397 (2017). https://doi.org/10.1016/j.applthermaleng.2016.08.063
Keshock, E.G.: Experimental and analytical investigation of 0 G condensation in a mechanical refrigeration system application. (1975)
Kim, N.-H.: Condensation heat transfer and pressure drop of R-410A in flat aluminum multi-port tubes. Heat Mass Transf. 54(2), 523–535 (2018). https://doi.org/10.1007/s00231-017-2157-6
Kim, Y.J., Joshi, Y.K., Fedorov, A.G.: An absorption based miniature heat pump system for electronics cooling. Int. J. Refrig 31(1), 23–33 (2008). https://doi.org/10.1016/j.ijrefrig.2007.07.003
Knipper, P., Bertsche, D., Gneiting, R., Wetzel, T.: Experimental investigation of heat transfer and pressure drop during condensation of R134a in multiport flat tubes. Int. J. Refrig 98, 211–221 (2019). https://doi.org/10.1016/j.ijrefrig.2018.10.019
Lee, H., Kharangate, C.R., Mascarenhas, N., Park, I., Mudawar, I.: Experimental and computational investigation of vertical downflow condensation. Int. J. Heat Mass Transf. 85, 865–879 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.02.037
Lee, H., Mudawar, I., Hasan, M.M.: Experimental and theoretical investigation of annular flow condensation in microgravity. Int. J. Heat Mass Transf. 61, 293–309 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2013.02.010
Lee, H., Park, I., Konishi, C., Mudawar, I., May, R.I., Juergens, J.R., Wagner, J.D., Hall, N.R., Nahra, H.K., Hasan, M.M., others: Experimental investigation of flow condensation in microgravity. J. Heat Trans. 136(2) (2014). https://doi.org/10.1115/1.4025683
Lee, W.H.: Pressure iteration scheme for two-phase flow modeling. In Multiphase Transport: Fundamentals, Reactor Safety, Applications. 407–432 (1980). https://doi.org/10.1142/9789814460286_0004
Lemmon, E., Huber, M., McLinden, M.: NIST Standard Reference Database 23, Reference Fluid Thermodynamic and Transport Properties (REFPROP), version 9.0, National Institute of Standards and Technology. R1234yf. fld file dated December 22, 2010 (2010)
Li, W., Lyu, D., Zhang, J., Sherif, S.: Condensation Heat Transfer and Flow Properties of R134a Refrigerant in Rectangular Minichannel: A Numerical Study. J. Therm. Sci. Eng. Appl. 12(2) (2020)
Li, W., Zhang, J., Mi, P., Zhao, J., Tao, Z., Childs, P.R., Shih, T.I.-P.: The effect of gravity on R410A condensing flow in horizontal circular tubes. Numerical Heat Transfer, Part A: Applications 71(3), 327–340 (2017). https://doi.org/10.1080/10407782.2016.1264743
Lyulin, Y., Marchuk, I., Chikov, S., Kabov, O.: Experimental study of laminar convective condensation of pure vapor inside an inclined circular tube. Microgravity Sci. Technol. 23(4), 439–445 (2011). https://doi.org/10.1007/s12217-011-9283-4
Matkovic, M., Cavallini, A., Del Col, D., Rossetto, L.: Experimental study on condensation heat transfer inside a single circular minichannel. Int. J. Heat Mass Transf. 52(9–10), 2311–2323 (2009)
Meyer, J.P., Dirker, J., Adelaja, A.O.: Condensation heat transfer in smooth inclined tubes for R134a at different saturation temperatures. Int. J. Heat Mass Transf. 70, 515–525 (2014). https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.038
Mohseni, S., Akhavan-Behabadi, M.: Visual study of flow patterns during condensation inside a microfin tube with different tube inclinations. Int. Commun. Heat Mass Transfer 38(8), 1156–1161 (2011). https://doi.org/10.1016/j.icheatmasstransfer.2011.04.032
Nalbandian, H., Yang, C.-Y., Chen, K.-T.: Effect of channel size and shape on condensation heat transfer of refrigerants HFO-1234yf and HFC-134a in rectangular microchannels. Int. J. Heat Mass Transf. 161, 120314 (2020)
O’Neill, L.E., Balasubramaniam, R., Nahra, H.K., Hasan, M.M., Mudawar, I.: Flow condensation heat transfer in a smooth tube at different orientations: Experimental results and predictive models. Int. J. Heat Mass Transf. 140, 533–563 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.103
Ohadi, M., Choo, K., Dessiatoun, S., Cetegen, E.: Next generation microchannel heat exchangers. Springer, (2013)
Rahman, M.M., Kariya, K., Miyara, A.: An experimental study and development of new correlation for condensation heat transfer coefficient of refrigerant inside a multiport minichannel with and without fins. Int. J. Heat Mass Transf. 116, 50–60 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.010
Riva, E.D., Col, D.D., Cavallini, A., Garimella, S.: Simulation of condensation in a circular minichannel: Application of VOF method and turbulence model. (2010)
Rusche, H.: Computational fluid dynamics of dispersed two-phase flows at high phase fractions. PhD Thesis, University of London (2002)
Sobhan, C.B., Garimella, S.V.: A comparative analysis of studies on heat transfer and fluid flow in microchannels. Microscale Thermophys. Eng. 5(4), 293–311 (2001). https://doi.org/10.1080/10893950152646759
Sun, D., Xu, J., Ding, P.: Numerical research on relationship between flow pattern transition and condensation heat transfer in microchannel. Eng. Comput. (2014). https://doi.org/10.1108/EC-07-2012-0150
Tuckerman, D.B., Pease, R.F.W.: High-performance heat sinking for VLSI. IEEE Electron Device Lett. 2(5), 126–129 (1981). https://doi.org/10.1109/EDL.1981.25367
Wang, H., Rose, J.: Heat transfer and pressure drop during laminar annular flow condensation in micro-channels. Experimental Heat Transfer 26(2–3), 247–265 (2013). https://doi.org/10.1080/08916152.2012.737261
Wang, H., Rose, J.W.: Theory of heat transfer during condensation in microchannels. Int. J. Heat Mass Transf. 54(11–12), 2525–2534 (2011). https://doi.org/10.1016/j.ijheatmasstransfer.2011.02.009
Wang, H.S., Rose, J.W.: Film condensation in horizontal microchannels: effect of channel shape. Int. J. Therm. Sci. 45(12), 1205–1212 (2006). https://doi.org/10.1016/j.ijthermalsci.2006.03.004
Wang, J., Li, J.M.: Pressure drop of R134a and R1234ze (E) during condensation in horizontal microchannel arrays cooled symmetrically and asymmetrically. Exp. Thermal Fluid Sci. 96, 266–283 (2018a). https://doi.org/10.1016/j.expthermflusci.2018.03.016
Wang, J., Li, J.M.: Theoretical and experimental study of wavy flow during R134a condensation flow in symmetrically and asymmetrically cooled microchannels. Int. J. Multiph. Flow 101, 125–136 (2018b). https://doi.org/10.1016/j.ijmultiphaseflow.2018.01.007
Wen, J., Gu, X., Liu, Y., Wang, S., Li, Y.: Effect of surface tension, gravity and turbulence on condensation patterns of R1234ze (E) in horizontal mini/macro-channels. Int. J. Heat Mass Transf. 125, 153–170 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.039
Wu, C., Li, J.: Numerical simulation of flow patterns and the effect on heat flux during R32 condensation in microtube. Int. J. Heat Mass Transf. 121, 265–274 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.123
Zhang, J., Li, W.: Numerical study on heat transfer and pressure drop characteristics of R410A condensation in horizontal circular mini/micro-tubes. The Canadian Journal of Chemical Engineering 94(9), 1809–1819 (2016). https://doi.org/10.1002/cjce.22554
Acknowledgment
The authors acknowledge the financial support from Indian Space Research Organization – ISRO- IIT(B) SPACE TECHNOLOGY CELL through grant no. RD/0119-ISROC00-014.
Author information
Authors and Affiliations
Corresponding authors
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Dey, P., Raj, D. & Saha, S.K. A Numerical Study on Condensation Heat Transfer Characteristics of R134a in Microchannel Under Varying Gravity Conditions. Microgravity Sci. Technol. 33, 34 (2021). https://doi.org/10.1007/s12217-021-09884-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s12217-021-09884-6