Skip to main content

Advertisement

Log in

Experimental Study of Pool Boiling Critical Heat Flux on Thin Wires under Various Gravities

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

The experimental study of pure water pool boiling critical heat flux (CHF) on two platinum wires with 26 mm in length and 30 μm and 50 μm in diameters was conducted to investigate the effect of gravity on pool boiling CHF. The gravity level ranges from 1 to 3.5 g, and the saturation pressure ranges from 0.1 to 0.5 MPa. The hypergravity was generated by a centrifugal machine. The comparison between the experimental data under hypergravity and earth gravity shows that the difference between the pool boiling CHF under earth gravity and hypergravity is not significant in the experimental gravity range, almost within ±15% for gravity levels less than 3.5 g, and that generally the CHF under hypergravity is slightly higher than that under earth gravity. The pool boiling CHF experimental data are also used to assess 21 available correlations proposed for the pool boiling CHF under earth gravity to evaluate their applicability to hypergravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arik, M., Bar-Cohen, A.: Ebullient cooling of integrated circuits by Novec fluid. In: Proc. the Pacific Rim Intersociety, Electronics Packaging Conference, Hawaii, pp. 13–18 (2001)

    Google Scholar 

  • Bailey, W., Young, E., Beduz, C., Yang, Y.: Pool Boiling Study on Candidature of Pentane Methanol and Water for near Room Temperature Cooling. Institute of Electrical and Electronics Engineers Inc., San Diego (2006)

    Book  Google Scholar 

  • Brusstar, M.J., Merte, H.: Effects of buoyancy on the critical heat flux in forced convection. J. Thermophys. Heat Transf. 8(2), 322–328 (1994)

    Article  Google Scholar 

  • Chang, YP: An analysis of the critical conditions and burnout in boiling heat transfer. USAEC Rep. TID-14004, Washington, DC (1961)

  • Chang, Y.P., Snyder, N.W.: Heat transfer in saturated boiling. Chem. Eng. Prog. Symp. Ser. 56(30), 25–28 (1960)

    Google Scholar 

  • Chang, J.Y., You, S.M.: Heater orientation effects on pool boiling of micro-porous-enhanced surfaces in saturated FC-72. ASME J. Heat Transf. 118(4), 937–943 (1996)

    Article  Google Scholar 

  • Costello, C.P., Adams, J.M.: The interrelation of geometry, orientation, and acceleration in the peak heat flux problem. A.I.Ch.E. Journal. 9(5), 663–671 (1963)

    Article  Google Scholar 

  • Dhir, V.K., Warrier, G.R., Aktinol, E., Chao, D., Eggers, J., Sheredy, W., Booth, W.: Nucleate pool boiling experiments (NPBX) on the international space station. Microgravity Sci. Technol. 24, 307–325 (2012)

    Article  Google Scholar 

  • EL-Genk, M.S., Bostanci, H.: Saturation boiling of HFE-7100 from a copper surface, simulating a microelectronic chip. Int. J. Heat Mass Transf. 46(10), l840–l854 (2002)

    Google Scholar 

  • El-Genk, M.S., Guo, Z.: Transient boiling from inclined and downward-facing surfaces in a saturated pool. Int. J. Refrig. 16(6), 414–422 (1993)

    Article  Google Scholar 

  • Fang, X., Dong, A.: A comparative study of correlations of critical heat flux of pool boiling. J. Nucl. Sci. Technol. 54(1), 1–12 (2016)

    Article  Google Scholar 

  • Fang, X., Li, G., Li, D., Xu, Y.: An experimental study of R134a flow boiling heat transfer in a 4.07 mm tube under earth gravity and hypergravity. Int. J. Heat Mass Transf. 87, 399–408 (2015)

    Article  Google Scholar 

  • Guan, C.K., Klausner, J.F., Mei, R.: A new mechanistic model for pool boiling CHF on horizontal surfaces. Int. J. Heat Mass Transf. 54(17), 3960–3969 (2011)

    Article  MATH  Google Scholar 

  • Haramura, Y., Katto, Y.: New hydrodynamic model of critical heat flux applicable widely to both pool and forced convection boiling on submerged bodies in saturated liquids. Int. J. Heat Mass Transf. 26(3), 389–399 (1983)

    Article  MATH  Google Scholar 

  • Holman, J.P., Gajda, W.J.: Experimental Methods for Engineers. McGraw–Hill, New York (1989)

    Google Scholar 

  • Kandlikar, S.G.: A theoretical model to predict pool boiling CHF incorporating effects of contact angle and orientation. J. Heat Transf. 123(6), 1071–1079 (2001)

    Article  Google Scholar 

  • Kim, J., Benton, J.F.: Highly subcooled pool boiling heat transfer at various gravity levels. Int. J. Heat Fluid Flow. 23(4), 497–508 (2002)

    Article  Google Scholar 

  • Kim, J., Benton, J.F., Wisniewski, D.: Pool boiling heat transfer on small heaters: effect of gravity and subcooling. Int. J. Heat Mass Transf. 45(19), 3919–3932 (2002)

    Article  Google Scholar 

  • Kim, J.H., You, S.M., Pak, J.Y.: Effects of heater size and working fluids on nucleate boiling heat transfer. Int. J. Heat Mass Transf. 49(1), 122–131 (2006)

    Article  Google Scholar 

  • Kirichenko, Y.A., Chernyakov, P.S.: Determination of the first critical thermal flux on flat heaters. J. Eng. Phys. Thermophys. 20(6), 699–703 (1971)

    Article  Google Scholar 

  • Kirichenko, Y.A., Kozlov, S.M., Levchenko, N.M.: Critical heat-transfer characteristic for the boiling of helium I in a centrifugal force field. Inzheerno-Fizicheskii Zhurnal. 42(2), 207–213 (1982) (in Russian)

    Google Scholar 

  • Kline, S.J., McClintock, F.A.: Describing uncertainties in single-sample experiments. Mech. Eng. 75(1), 3–8 (1953)

    Google Scholar 

  • Kutateladze, S.S.: A hydrodynamic theory of changes in boiling process under free convection. Isv Akad Nauk, USSR, Otd Tekh Nauk. 4, 529–935 (1951)

    Google Scholar 

  • Kwark, S.M., Amaya, M., Kumar, R., Moreno, G., You, S.M.: Effects of pressure, orientation, and heater size on pool boiling of water with nanocoated heaters. Int. J. Heat Mass Transf. 53(23–24), 5199–5208 (2010)

  • Liao, L., Bao, R., Liu, Z.: Compositive effects of orientation and contact angle on critical heat flux in pool boiling of water. Heat Mass Transf. 44(12), 1447–1453 (2008)

    Article  Google Scholar 

  • Lienhard, JH: Interacting effects of gravity and size upon the peak and minimum pool heat fluxes. NASA CR-1551 (1970)

  • Lienhard, J.H., Dhir, V.K.: Hydrodynamic prediction of peak pool boiling heat fluxes from finite bodies. ASME J. Heat Transf. 95, 152–158 (1973)

    Article  Google Scholar 

  • Merte, H., Clark, J.A.: Boiling heat transfer with cryogenic fluids at standard, fractional, and near-zero gravity. ASME J. Heat Transf. 86(3), 351–358 (1964)

    Article  Google Scholar 

  • Raj, R., Kim, J., McQuillen, J.: Subcooled pool boiling in variable gravity environments. J. Heat Transf. 131(9), 091502 (2009)

    Article  Google Scholar 

  • Raj, R., Kim, J., McQuillen, J.: Gravity scaling parameter for pool boiling heat transfer. J. Heat Transf. 132(9), 091502 (2010)

    Article  Google Scholar 

  • Raj, R., Kim, J., McQuillen, J.: On the scaling of pool boiling heat flux with gravity and heater size. J. Heat Transf. 134(1), 011502 (2012)

    Article  Google Scholar 

  • Rohsenow, W.M., Griffith, P.: Correlation of maximum heat transfer data for boiling of saturated liquid. Chem. Eng. Prog. Symp. Ser. 52(18), 47–49 (1956)

    Google Scholar 

  • Sakashita, H., Ono, A.: Boiling behaviors and critical heat flux on a horizontal plate in saturated pool boiling of water at high pressures. Int. J. Heat Mass Transf. 52(34), 744–750 (2009)

    Article  Google Scholar 

  • Sun, K.H., Lienhard, J.H.: The peak pool boiling heat flux on horizontal cylinders. Int. J. Heat Mass Transf. 13, 1425–1439 (1970)

    Article  Google Scholar 

  • Theofanous, T.G., Dinh, T.N.: High heat flux boiling and burnout as microphysical phenomena: mounting evidence and opportunities. Multiph. Sci. Technol. 18(3), 251–276 (2006)

    Article  Google Scholar 

  • Vishnev, I.P.: Effect of orienting the hot surface with respect to the gravitational field on the critical nucleate boiling of a liquid. J. Eng. Phys. 24(1), 43–48 (1974)

    Article  Google Scholar 

  • Xue, Y.-F., Zhao, J.-F., Wei, J.-J., Li, J., Guo, D., Wan, S.-X.: Experimental study of nucleate pool boiling of FC-72 on smooth surface under microgravity. Microgravity Sci. Technol. 23(S), S75–S85 (2011)

    Article  Google Scholar 

  • Yagov, V.V.: Is a crisis in pool boiling actually a hydrodynamic phenomenon? Int. J. Heat Mass Transf. 73(3), 265–273 (2014)

    Article  Google Scholar 

  • Zhao, J.F., Wan, S.X., Liu, G., Li, Z.D., Hu, W.R.: Pool boiling heat transfer in microgravity. Microgravity Sci. Technol. XIX(3/4), 135–136 (2007)

    Article  Google Scholar 

  • Zuber, N.: Hydrodynamics aspects of boiling heat transfer. Atomic Energy Commission Report AECU-4439 (1959)

Download references

Acknowledgments

This study is supported by National Natural Science Foundation of China (51576099, 51576099) and funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiande Fang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, X., Zheng, L., He, Y. et al. Experimental Study of Pool Boiling Critical Heat Flux on Thin Wires under Various Gravities. Microgravity Sci. Technol. 31, 339–345 (2019). https://doi.org/10.1007/s12217-019-9688-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-019-9688-z

Keywords

Navigation