Skip to main content
Log in

Relativistic Evaluation Models of Laser Time Transfer between Satellites Resulting from Orbit Perturbations and Attitude Jitters

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

The realization of picosecond level laser time transfer between satellites plays a key role in microgravity scientific missions, such as gravitational wave detection, next generation GNSS (Global Navigation Satellite System), deep space exploration, testing general relativity and searching for dark matter. In picosecond or higher level, a deep insight of relativistic error of laser time transfer between satellites induced by orbit perturbations and attitude jitters is urgently needed, which contributes to the compensation of relativistic error. Firstly, this paper points out the problem of orbit perturbations and attitude jitters. Then, the relativistic evaluation models of one-way laser time transfer and two-way laser time transfer resulting from orbit perturbations and attitude jitters are investigated. The relativistic evaluation models are proposed with incorporation of attitude dynamics and orbit dynamics of satellites, as well as relativistic models of one-way laser time transfer and two-way laser time transfer. Simulation studies are carried out to analyze the effect of orbit perturbations and attitude jitters on the relativistic error. Simulation results show that the relativistic error induced by orbit perturbations increases with time and the relativistic error induced by attitude jitters displays periodic variation. Furthermore, the relativistic error of two-way laser time transfer is less than one-way laser time transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Birnbaum, K.M., Chen, Y., Hemmati, H.: Precision optical ranging by paired one-way time of flight. In Free-Space Laser Communication Technologies XXII. 7587, 75870A (2010)

    Article  Google Scholar 

  • Bongs, K., Singh, Y., Smith, L., He, W., Kock, O., et al.: Development of a strontium optical lattice clock for the SOC mission on the ISS. C. R. Physique. 16(5), 553–564 (2015)

    Article  Google Scholar 

  • Brewer, S.M., Chen, J.-S., Hankin, A.M., Clements, E.R., Chou, C.W., et al.: An 27Al+ quantum-logic clock with systematic uncertainty below 10−18. arXiv Preprint. arXiv, 1902.07694 (2019)

    Google Scholar 

  • Chen, Y., Birnbaum, K.M., Hemmati, H.: Field demonstrations of active laser ranging with sub-mm precision. In Free-Space Laser Communication Technologies XXIII. 7923, 79230S (2011)

    Article  Google Scholar 

  • Derevianko, A., Pospelov, M.: Hunting for topological dark matter with atomic clocks. Nat. Phys. 10(12), 933 (2014)

    Article  Google Scholar 

  • Dimitrov, B.G.: New mathematical models of GPS intersatellite communications in the gravitational field of the near-earth space. AIP Conf. Proc. 2075(1), 040007 ( (2019)

    Article  Google Scholar 

  • Ely, T.: Advancing navigation, timing, and science with the deep space atomic clock. In SpaceOps 2014 Conference (p. 1856). (2014)

  • Exertier, P., Bonnefond, P., Deleflie, F., Barlier, F., Kasser, M., et al.: Contribution of laser ranging to Earth’s sciences. C. R. Geosci. 338(14–15), 958–967 (2006)

    Article  Google Scholar 

  • Exertier, P., Samain, E., Martin, N., Courde, C., Laas-Bourez, M., et al.: Time transfer by laser link: data analysis and validation to the ps level. Adv. Space Res. 54(11), 2371–2385 (2014)

    Article  Google Scholar 

  • Fridelance, P., Veillet, C.: Operation and data analysis in the LASSO experiment. Metrologia. 32(1), 27 (1995)

    Article  Google Scholar 

  • Grotti, J., Koller, S., Vogt, S., Häfner, S., Sterr, U., et al.: Geodesy and metrology with a transportable optical clock. Nat. Phys. 14(5), 437 (2018)

    Article  Google Scholar 

  • Klioner, S.A.: The problem of clock synchronization: a relativistic approach. Celest. Mech. Dyn. Astron. 53(1), 81–109 (1992)

    Article  Google Scholar 

  • Kolkowitz, S., Pikovski, I., Langellier, N., Lukin, M.D., Walsworth, R.L., et al.: Gravitational wave detection with optical lattice atomic clocks. Phys. Rev. D. 94(12), 124043 (2016)

    Article  Google Scholar 

  • Laurent, P., Lemonde, P., Simon, E., Santarelli, G., Clairon, A., et al.: A cold atom clock in absence of gravity. The European physics journal D-atomic, molecular, optical and. Plasma Phys. 3(3), 201–204 (1998)

    Google Scholar 

  • Li, Y., Luo, Z., Liu, H., Gao, R., Jin, G.: Laser interferometer for space gravitational waves detection and earth gravity mapping. Microgravity Sci. Technol. 30(6), 817–829 (2018)

    Article  Google Scholar 

  • Liu, L., Lü, D.S., Chen, W.B., Li, T., Qu, Q.Z., et al.: In-orbit operation of an atomic clock based on laser-cooled 87Rb atoms. Nat. Commun. 9(1), 2760 (2018)

    Article  Google Scholar 

  • Lv, W., Xiang, M., Ye, W., Wen, Y., Zhu, H.: Research on calculation of on-orbit unconstraint modal of flexible satellite. J. Astron. 35(4), 404–409 (2014)

    Google Scholar 

  • Markley, F.L., Bauer, F.H., Deily, J.J., Femiano, M.D.: Attitude control system conceptual design for geostationary operational environmental satellite spacecraft series. J. Guid. Control Dyn. 18(2), 247–255 (1995)

    Article  Google Scholar 

  • Meynadier, F., Delva, P., le Poncin-Lafitte, C., Guerlin, C., Wolf, P.: Atomic clock ensemble in space (ACES) data analysis. Classical Quantum Gravity. 35(3), 035018 (2018)

    Article  Google Scholar 

  • Michaels, D., Speed, J.: Ball aerospace star tracker achieves high tracking accuracy for a moving star field. In 2005 IEEE Aerospace Conference. 1–7 (2005)

  • Petit, G., Wolf, P.: Relativistic theory for picosecond time transfer in the vicinity of the earth. Astron. Astrophys. 286, 971–977 (1994)

    Google Scholar 

  • Prochazka, I., Schreiber, U., Schäfer, W.: Laser time transfer and its application in the Galileo programme. Adv. Space Res. 47(2), 239–246 (2011)

    Article  Google Scholar 

  • Proia, A., Cibiel, G., White, J., Wilson, D., Senior, K.: Absolute calibration of GNSS time transfer systems: NRL and CNES techniques comparison. In 2011 Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum (FCS) Proceedings (pp. 1–6). IEEE. (2011)

  • Reynaud, S., Salomon, C., Wolf, P.: Testing general relativity with atomic clocks. Space Sci. Rev. 148(1–4), 233–247 (2009)

    Article  Google Scholar 

  • Rudolph, J., Gaaloul, N., Singh, Y., Ahlers, H., Herr, W., et al.: Degeneration quantum gases in microgravity. Microgravity Sci. Technol. 23(3), 287–292 (2011)

    Article  Google Scholar 

  • Sackett, C.A., Lam, T.C., Stickney, J.C., Burke, J.H.: Extreme adiabatic expansion in micro-gravity: modeling for the cold atomic laboratory. Microgravity Sci. Technol. 30, 155–163 (2018)

    Article  Google Scholar 

  • Sorrentino, F., Bongs, K., Bouyer, P., Cacciapuoti, L., Angelies, M., et al.: A compact atom interferometer for future space missions. Microgravity Sci. Technol. 22(4), 551–561 (2010)

    Article  Google Scholar 

  • Turyshev, S.G., Toth, V.T., Sazhin, M.V.: General relativistic observables of the GRAIL mission. Phys. Rev. D. 87(2), 024020 (2013)

    Article  Google Scholar 

  • Turyshev, S.G., Sazhin, M.V., Toth, V.T.: General relativistic laser interferometric observables of the GRACE-follow-on mission. Phys. Rev. D. 89(10), 105029 (2014)

    Article  Google Scholar 

  • Turyshev, S.G., Yu, N., Toth, V.T.: General relativistic observables for the ACES experiment. Phys. Rev. D. 93(4), 045027 (2016)

    Article  MathSciNet  Google Scholar 

  • Xie, Y.: Relativistic time transfer for inter-satellite links. Front. Astron. Space Sci. 3, 15 (2016)

    Article  Google Scholar 

  • Zhang, S.G.: High precision time-frequency system in space station. In the 7th International Symposium on Cold Atom Physics. Hangzhou, China. (2016)

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (51675430 and 11402044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Liu.

Ethics declarations

Author Disclosure Statement

No competing financial interests exist.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, J., Liu, L. & Tang, S. Relativistic Evaluation Models of Laser Time Transfer between Satellites Resulting from Orbit Perturbations and Attitude Jitters. Microgravity Sci. Technol. 32, 281–293 (2020). https://doi.org/10.1007/s12217-019-09771-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-019-09771-1

Keywords

Navigation