Skip to main content
Log in

Effects of Nanoparticle Shapes on Heat and Mass Transfer of Nanofluid Thermocapillary Convection around a Gas Bubble

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In order to reveal the influence of nanoparticle shape on heat transfer in nanofluid nucleate boiling process, a three-dimensional numerical investigation of nanofluid thermocapillary convection around a gas bubble is conducted. Five different shaped nanoparticles are used in this study and the nanofluid flow is simulated by two-phase mixture model. The thermocapillary convection intensity of nanofluid with spherical nanoparticles is the largest, which is followed by blade, brick, cylinder and platelet shapes, respectively. Non-spherical nanoparticles with a suitable shape and relatively high volume fraction are beneficial for heat transfer enhancement, and nanofluid containing blade shaped nanoparticles has the largest heat transfer enhancement, which is followed by platelet, cylinder and blade shapes respectively. In particular, as αp = 0.05 the average Nusselt number of nanofluid with blade, platelet, cylinder and blade shaped nanoparticles are increased by 22.8%, 11.7%, 7.7% and 2.8% relative to that of with spherical nanoparticle respectively. Moreover, the total entropy generation increases with nanoparticle sphericity increasing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

a :

acceleration, m2/s

d p :

nanoparticle diameter, nm

f :

friction factor

f drag :

drag function

g :

gravitational acceleration, m/s2

h :

cavity height, m

L :

cavity length, m

Ma :

Marangoni number

Nu :

Nusselt number

P :

pressure, Pa

Pr :

Prandtl number, Pr = Cpμ/λ.

S :

area (m2)

S gen :

entropy generation (W/m3 K)

\( {S}_{gen}^{\prime } \) :

total entropy generation (W/K)

T :

fluid temperature, K

\( \overset{\rightharpoonup }{V} \) :

velocity vector(m/s)

u :

x-axis velocity component (m/s).

v :

y-axis velocity component (m/s)

w :

z-axis velocity component (m/s)

x :

x-axis coordinate (m)

y :

y-axis coordinate (m)

z :

z-axis coordinate (m)

λ :

thermal conductivity, W/mK

ν :

kinematic viscosity, m2/s

γ T :

surface tension temperature coefficient, N/mK

α p :

nanoparticles volume fraction

μ :

dynamic viscosity, kg/ms

ρ :

density, kg/m3

Ψ :

sphericity of nanoparticles

∅ :

variables (denotes temperature, velocity and pressure)

ave.:

average value

f:

base fluid

nf:

nanofluid

p:

nanoparticles

h:

hot wall

c:

cold wall

F:

velocity friction

References

  • Abdollahi, A., Salimpour, M.R., Etesami, N.: Experimental analysis of magnetic field effect on the pool boiling heat transfer of a ferrofluid. Appl. Therm. Eng. 111, 1101–1110 (2017)

    Article  Google Scholar 

  • Abdullah, A.A., Althobaiti, S.A., Lindsay, K.A.: Marangoni convection in water-alumina nanofluids: dependence on the nanoparticle size. Eur. J. Mech.-B/Fluids. 67, 259–268 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Al-Sharafi, A., Sahin, A.Z., Yilbas, B.S., et al.: Marangoni convection flow and heat transfer characteristics of water-CNT nanofluid droplets. Numer. Heat Transfer, Part A: Appl. 69(7), 763–780 (2016)

    Article  Google Scholar 

  • Aminfar, H., Mohammadpourfard, M., Mohseni, F.: Numerical investigation of thermocapillary and buoyancy driven convection of nanofluids in a floating zone. Int. J. Mech. Sci. 65(1), 147–156 (2012)

    Article  Google Scholar 

  • Arlabosse, P., Tadrist, L., Tadrist, H., Pantaloni, J.: Experimental analysis of the heat transfer induced by thermocapillary convection around a bubble. Trans. ASME. J. Heat Transfer. 122(1), 66–73 (2000)

    Article  Google Scholar 

  • Betz, J., Straub, J.: Numerical and experimental study of the heat transfer and fluid flow by thermocapillary convection around gas bubbles. Heat Mass Transfer/Waerme-und Stoffuebertragung. 37(2–3), 215–227 (2001)

    Article  Google Scholar 

  • Bhunia, A., Kamotani, Y.: Flow around a bubble on a heated wall in a crossflowing liquid under microgravity condition. Int. J. Heat Mass Transfer. 44(20), 3895–3905 (2001)

    Article  MATH  Google Scholar 

  • Brinkman, H.C.: The viscosity of concentrated suspensions and solutions. J Crystal Growth. 104, 861–867 (1952)

    Google Scholar 

  • Choi, U.S.: Enhancing thermal conductivity of fluids with nanoparticles. ASME FED. 231, 99–103 (1995)

    Google Scholar 

  • Dadjoo, M., Etesami, N., Esfahany, M.N.: Influence of orientation and roughness of heater surface on critical heat flux and pool boiling heat transfer coefficient of nanofluid. Appl. Therm. Eng. 124, 353–361 (2017)

    Article  Google Scholar 

  • Das, S.K., Choi, S.U.S., Yu, W., Pradeep, T.: Nanofluids science and technology. Wiley, Hoboken, NJ (2008)

    Google Scholar 

  • R. Derakhshan, Ahmadreza Shojaei, Kh. Hosseinzadeh, et al., Hydrothermal analysis of magneto hydrodynamic nanofluid flow between two parallel by AGM, Case Studies in Thermal Engineering, 2019,14, 100439

  • FLUENT (n.d.) 6.3 Documentation, User’s Guide

  • Gevorgyan, G.S., Petrosyan, K.A., Hakobyan, R.S., et al.: Experimental investigation of Marangoni convection in nanofluids. J. Contemp. Phys. (Armenian Acad. Sci.). 52(4), 362–365 (2017)

    Article  Google Scholar 

  • Ghadikolaei, S.S., Hosseinzadeh, K., Ganji, D.D.: Investigation on three dimensional squeezing flow of mixture base fluid (ethylene glycol-water) suspended by hybrid nanoparticle (Fe3O4-Ag) dependent on shape factor. J. Mol. Liq. 262(15), 376–388 (2018a)

    Article  Google Scholar 

  • Ghadikolaei, S.S., Hosseinzadeh, K., Ganji, D.D.: Numerical study on magnetohydrodynic CNTs-water nanofluids as a micropolar dusty fluid influenced by non-linear thermal radiation and joule heating effect. Powder Technol. 340, 389–399 (2018d)

    Article  Google Scholar 

  • Ghadikolaei, S.S., Hosseinzadeh, K., Hatamic, M., Ganji, D.D.: MHD boundary layer analysis for micropolar dusty fluid containing hybrid nanoparticles (Cu-Al2O3) over a porous medium. J. Mol. Liq. 268(15), 813–823 (2018b)

    Article  Google Scholar 

  • Ghadikolaei, S.S., Hosseinzadeh, K., Hatamic, M., et al.: Investigation for squeezing flow of ethylene glycol (C2H6O2) carbon nanotubes (CNTs) in rotating stretching channel with nonlinear thermal radiation. J. Mol. Liq. 63(1), 10–21 (2018c)

    Article  Google Scholar 

  • Ghadikolaei, S.S., Hosseinzadeh, K., Yassari, M., et al.: Boundary layer analysis of micropolar dusty fluid with TiO2 nanoparticles in a porous medium under the effect of magnetic field and thermal radiation over a stretching sheet. J. Mol. Liq. 244, 374–389 (2017b)

    Article  Google Scholar 

  • Ghadikolaei, S.S., Yassari, M., Sadeghi, H., et al.: Investigation on thermophysical properties of Tio2–cu/H2O hybrid nanofluid transport dependent on shape factor in MHD stagnation point flow. Powder Technol. 322, 428–438 (2017a)

    Article  Google Scholar 

  • GhadikolaeiaKh, S.S., Hosseinzadeh, D.D.: Ganji, investigation on ethylene glycol-water mixture fluid suspend by hybrid nanoparticles (TiO2-CuO) over rotating cone with considering nanoparticles shape factor. J. Mol. Liq. 272(15), 226–236 (2018)

    Article  Google Scholar 

  • Hamilton, R.L., Crosser, O.K.: Thermal conductivity of heterogeneous two component systems. Indus. Eng. Chem. Fund. 1, 187–191 (1962)

    Article  Google Scholar 

  • Hosseinzadeh, K., Afsharpanah, F., Zamani, S., et al.: A numerical investigation on ethylene glycol-titanium dioxide nanofluid convective flow over a stretching sheet in presence of heat generation/absorption. Case Stud Thermal Eng. 12, 228–236 (2018)

    Article  Google Scholar 

  • Hosseinzadeh, K., Asadi, A., Mogharrebi, A.R., et al.: Entropy generation analysis of (CH2OH)2containing CNTs nanofluid flow under effect of MHD and thermal radiation. Case Stud Thermal Eng. 14, 100482 (2019)

    Article  Google Scholar 

  • Hosseinzadeh, K., JafarianAmiri, A., SaediArdahaie, S., Ganji, D.D.: Effect of variable lorentz forces on nanofluid flow in movable parallel plates utilizing analytical method. Case Stud Thermal Eng. 10, 595–610 (2017)

    Article  Google Scholar 

  • Jiang, Y., Zhou, X.: Heat transfer and entropy generation analysis of nanofluids thermocapillary convection around a bubble in a cavity. Int. Commun. Heat Mass Transfer. 105, 37–45 (2019b)

    Article  Google Scholar 

  • Jiang, Y.N., Xu, Z.: Numerical investigation of nanofluid thermocapillary convection based on two-phase mixture model. Microgravity Sci. Technol. 29(5), 365–370 (2017)

    Article  Google Scholar 

  • Jiang, Y.N., Zhou, X.M.: Numerical study of heat transfer and entropy generation of nanofluids buoyant-thermocapillary convection around a gas bubble. Microgravity Sci. Technol. 31(2), 195–206 (2019a)

    Article  MathSciNet  Google Scholar 

  • Kenning, D.B.R., Kao, Y.S.: Convective heat transfer to water containing bubbles: enhancement not dependent on thermocapillarity. Int. J. Heat Mass Transf. 15(9), 1709–1717 (1972)

    Article  Google Scholar 

  • Khan, M.S., Abid, M., Ali, H.M., et al.: Comparative performance assessment of solar dish assisted s-CO2 Brayton cycle using nanofluids. Appl. Therm. Eng. 148(5), 295–306 (2019)

    Article  Google Scholar 

  • Khanafer, K., Vafai, K.: A critical synthesis of thermophysical characteristics of nanofluids. Int. J. Heat Mass Transf. 54, 4410–4428 (2011)

    Article  MATH  Google Scholar 

  • Kim, J., Benton, J.F.: Highly subcooled pool boiling heat transfer at various gravity levels. Int. J. Heat Fluid Flow. 23(4), 497–508 (2002)

    Article  Google Scholar 

  • Kolsi, L., Lajnef, E., Aich, W., et al.: Numerical investigation of combined buoyancy-thermocapillary convection and entropy generation in 3D cavity filled with Al2O3 nanofluid. Alexandria Eng. J. 56(1), 71–79 (2017)

    Article  Google Scholar 

  • Koukan, E., Wozniak, G., Wozniak, K., Siekmann, J.: Experimental study of flow fields around small gas bubbles under the combined action of buoyancy and thermocapillarity. Heat Mass Transfer/Waerme-und Stoffuebertragung. 37(4–5), 437–441 (2001)

    Article  Google Scholar 

  • Larkin, B.K.: Thermocapillary flow around hemispherical bubble. AIChE J. 16(1), 101–107 (1970)

    Article  Google Scholar 

  • Liu, F., Cai, Y., Wang, L.Q., Zhao, J.: Effects of nanoparticle shapes on laminar forced convective heat transfer in curved ducts using two-phase model. Int. J. Heat Mass Transf. 116, 292–305 (2018)

    Article  Google Scholar 

  • Manninen, M., Taivassalo, V., Kallio, S.: On the mixture model for multiphase flow, 288, technical research Center of Finland. VTT Publications. 3(2), 9–18 (1996)

    Google Scholar 

  • O’Shaughnessy, S.M., Robinson, A.J.: Numerical investigation of bubble induced Marangoni convection: some aspects of bubble geometry. Microgravity Sci. Technol. 20(3–4), 319–325 (2008)

    Article  Google Scholar 

  • O’Shaughnessy, S.M., Robinson, A.J.: Numerical investigation of bubble induced Marangoni convection. Interdisciplinary Trans. Phenom.: Ann. N.Y. Acad. Sci. 1161, 304–320 (2009a)

    Google Scholar 

  • O’Shaughnessy, S.M., Robinson, A.J.: The influence of the magnitude of gravitational acceleration on the Marangoni convection about an isolated bubble under a heated wall. Heat Transfer Eng. 30, 1–13 (2009b)

    Article  Google Scholar 

  • O’Shaughnessy, S.M., Robinson, A.J.: Heat transfer near an isolated hemispherical gas bubble: the combined influence of thermocapillarity and buoyancy. Int. J. Heat Mass Transf. 62, 422–434 (2013)

    Article  Google Scholar 

  • O’Shaughnessy, S.M., Robinson, A.J.: Convective heat transfer due to thermal Marangoni flow about two bubbles on a heated wall. Int. J. Therm. Sci. 78, 101–110 (2014)

    Article  Google Scholar 

  • Petrovic, S., Robinson, T., Judd, R.L.: Marangoni heat transfer in subcooled nucleate pool boiling. Int. J. Heat Mass Transf. 47(23), 5115–5128 (2004)

    Article  Google Scholar 

  • Raj, R., Jungho, K., McQuillen, J.: Subcooled pool boiling in variable gravity environments. J. Heat Transfer. 131, 091502–091510 (2009)

    Article  Google Scholar 

  • Saleh, H., Hashim, I.: Buoyant Marangoni convection of nanofluids in square cavity. Appl. Math. Mech. 36(9), 1169–1184 (2015)

    Article  MathSciNet  Google Scholar 

  • Schiller, L., Naumann, A.: A drag coefficient correlation. Z Ver. Deutsch Ing. 77(1), 318–320 (1935)

    Google Scholar 

  • Sheikholeslami, M., Chamkha, A.J.: Influence of Lorentz forces on nanofluid forced convection considering Marangoni convection. J. Mol. Liquids. 225, 750–757 (2017)

    Article  Google Scholar 

  • Sheikholeslami, M., Jafaryar, M., Hedayat, M., Nguyen, T.K., Bakouri, M.: Heat transfer and turbulent simulation of nanomaterial due to compound turbulator including irreversibility analysis. Int J Heat Mass Transfer. 137, 1290–1300 (2019)

    Article  Google Scholar 

  • Shojaei, A., Amiri, A.J., Ardahaie, S.S., et al.: Hydrothermal analysis of non-Newtonian second grade fluid flow on radiative stretching cylinder with Soret and Dufour effects. Case Stud Thermal Eng. 13, 100384 (2019)

    Article  Google Scholar 

  • Straub, J.: The role of surface tension for two-phase heat and mass transfer in the absence of gravity. Exp. Thermal Fluid Sci. 9(3), 253–273 (1994)

    Article  Google Scholar 

  • Straub, J., Betz, J., Marek, R.: Enhancement of heat transfer by thermocapillary convection around bubbles-a numerical study. Numer Heat Transfer: Part A. 25, 501–518 (1994)

    Article  Google Scholar 

  • Straub, J., Zell, M., Vogel, B.: What we learn from boiling under microgravity. Microgravity Sci. Technol. 6(4), 239–247 (1993)

    Google Scholar 

  • Timofeeva, E.V., Routbort, J.L., Singh, D.: Particle shape effects on thermophysical properties of alumina nanofluids. J. Appl. Phys. 106, 014304–014310 (2009)

    Article  Google Scholar 

  • Wen, D., Ding, Y.: Experimental investigation into the pool boiling heat transfer of aqueous based γ-alumina nanofluids. J. Nanopart. Res. 7(2–3), 265–274 (2005)

    Article  Google Scholar 

  • Wozniak, G.: Optical whole-field methods for thermo-convective flow analysis in microgravity. Measure. Sci. Technol. 10(10), 878–885 (1999)

    Article  Google Scholar 

  • Wozniak, G., Wozniak, K.: Buoyancy and thermocapillary flow analysis by the combined use of liquid crystals and PIV. Exp. Fluids. 17(3), 141–146 (1994)

    Article  Google Scholar 

  • Wozniak, K., Wozniak, G.: Temperature gradient driven flow experiments of two interacting bubbles on a hot wall. Heat Mass Transfer/Waerme-und Stoffuebertragung. 33(5–6), 363–369 (1998)

    Article  Google Scholar 

  • Wozniak, K., Wozniak, G., Roesgen, T.: Particle-image-velocimetry applied to thermocapillary convection. Exp. Fluids. 10(1), 12–16 (1990)

    Article  Google Scholar 

  • Zangooee, M.R., Hosseinzadeh, K., Ganji, D.D.: Hydrothermal analysis of MHD nanofluid (TiO2-GO) flow between two radiative stretchable rotating disks using AGM. Case Stud Thermal Eng. 14, 100460 (2019)

    Article  Google Scholar 

  • Zhuang, Y.J., Zhu, Q.Y.: Analysis of entropy generation in combined buoyancy-Marangoni convection of power-law nanofluids in 3D heterogeneous porous media. Int. J. Heat Mass Transf. 118, 686–707 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by National Natural Science Foundation of China (No.51976080).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Zhou, X. & Wang, Y. Effects of Nanoparticle Shapes on Heat and Mass Transfer of Nanofluid Thermocapillary Convection around a Gas Bubble. Microgravity Sci. Technol. 32, 167–177 (2020). https://doi.org/10.1007/s12217-019-09757-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-019-09757-z

Keywords

Navigation