Abstract
In order to reveal the influence of nanoparticle shape on heat transfer in nanofluid nucleate boiling process, a three-dimensional numerical investigation of nanofluid thermocapillary convection around a gas bubble is conducted. Five different shaped nanoparticles are used in this study and the nanofluid flow is simulated by two-phase mixture model. The thermocapillary convection intensity of nanofluid with spherical nanoparticles is the largest, which is followed by blade, brick, cylinder and platelet shapes, respectively. Non-spherical nanoparticles with a suitable shape and relatively high volume fraction are beneficial for heat transfer enhancement, and nanofluid containing blade shaped nanoparticles has the largest heat transfer enhancement, which is followed by platelet, cylinder and blade shapes respectively. In particular, as αp = 0.05 the average Nusselt number of nanofluid with blade, platelet, cylinder and blade shaped nanoparticles are increased by 22.8%, 11.7%, 7.7% and 2.8% relative to that of with spherical nanoparticle respectively. Moreover, the total entropy generation increases with nanoparticle sphericity increasing.
Similar content being viewed by others
Abbreviations
- a :
-
acceleration, m2/s
- d p :
-
nanoparticle diameter, nm
- f :
-
friction factor
- f drag :
-
drag function
- g :
-
gravitational acceleration, m/s2
- h :
-
cavity height, m
- L :
-
cavity length, m
- Ma :
-
Marangoni number
- Nu :
-
Nusselt number
- P :
-
pressure, Pa
- Pr :
-
Prandtl number, Pr = Cpμ/λ.
- S :
-
area (m2)
- S gen :
-
entropy generation (W/m3 K)
- \( {S}_{gen}^{\prime } \) :
-
total entropy generation (W/K)
- T :
-
fluid temperature, K
- \( \overset{\rightharpoonup }{V} \) :
-
velocity vector(m/s)
- u :
-
x-axis velocity component (m/s).
- v :
-
y-axis velocity component (m/s)
- w :
-
z-axis velocity component (m/s)
- x :
-
x-axis coordinate (m)
- y :
-
y-axis coordinate (m)
- z :
-
z-axis coordinate (m)
- λ :
-
thermal conductivity, W/mK
- ν :
-
kinematic viscosity, m2/s
- γ T :
-
surface tension temperature coefficient, N/mK
- α p :
-
nanoparticles volume fraction
- μ :
-
dynamic viscosity, kg/ms
- ρ :
-
density, kg/m3
- Ψ :
-
sphericity of nanoparticles
- ∅ :
-
variables (denotes temperature, velocity and pressure)
- ave.:
-
average value
- f:
-
base fluid
- nf:
-
nanofluid
- p:
-
nanoparticles
- h:
-
hot wall
- c:
-
cold wall
- F:
-
velocity friction
References
Abdollahi, A., Salimpour, M.R., Etesami, N.: Experimental analysis of magnetic field effect on the pool boiling heat transfer of a ferrofluid. Appl. Therm. Eng. 111, 1101–1110 (2017)
Abdullah, A.A., Althobaiti, S.A., Lindsay, K.A.: Marangoni convection in water-alumina nanofluids: dependence on the nanoparticle size. Eur. J. Mech.-B/Fluids. 67, 259–268 (2018)
Al-Sharafi, A., Sahin, A.Z., Yilbas, B.S., et al.: Marangoni convection flow and heat transfer characteristics of water-CNT nanofluid droplets. Numer. Heat Transfer, Part A: Appl. 69(7), 763–780 (2016)
Aminfar, H., Mohammadpourfard, M., Mohseni, F.: Numerical investigation of thermocapillary and buoyancy driven convection of nanofluids in a floating zone. Int. J. Mech. Sci. 65(1), 147–156 (2012)
Arlabosse, P., Tadrist, L., Tadrist, H., Pantaloni, J.: Experimental analysis of the heat transfer induced by thermocapillary convection around a bubble. Trans. ASME. J. Heat Transfer. 122(1), 66–73 (2000)
Betz, J., Straub, J.: Numerical and experimental study of the heat transfer and fluid flow by thermocapillary convection around gas bubbles. Heat Mass Transfer/Waerme-und Stoffuebertragung. 37(2–3), 215–227 (2001)
Bhunia, A., Kamotani, Y.: Flow around a bubble on a heated wall in a crossflowing liquid under microgravity condition. Int. J. Heat Mass Transfer. 44(20), 3895–3905 (2001)
Brinkman, H.C.: The viscosity of concentrated suspensions and solutions. J Crystal Growth. 104, 861–867 (1952)
Choi, U.S.: Enhancing thermal conductivity of fluids with nanoparticles. ASME FED. 231, 99–103 (1995)
Dadjoo, M., Etesami, N., Esfahany, M.N.: Influence of orientation and roughness of heater surface on critical heat flux and pool boiling heat transfer coefficient of nanofluid. Appl. Therm. Eng. 124, 353–361 (2017)
Das, S.K., Choi, S.U.S., Yu, W., Pradeep, T.: Nanofluids science and technology. Wiley, Hoboken, NJ (2008)
R. Derakhshan, Ahmadreza Shojaei, Kh. Hosseinzadeh, et al., Hydrothermal analysis of magneto hydrodynamic nanofluid flow between two parallel by AGM, Case Studies in Thermal Engineering, 2019,14, 100439
FLUENT (n.d.) 6.3 Documentation, User’s Guide
Gevorgyan, G.S., Petrosyan, K.A., Hakobyan, R.S., et al.: Experimental investigation of Marangoni convection in nanofluids. J. Contemp. Phys. (Armenian Acad. Sci.). 52(4), 362–365 (2017)
Ghadikolaei, S.S., Hosseinzadeh, K., Ganji, D.D.: Investigation on three dimensional squeezing flow of mixture base fluid (ethylene glycol-water) suspended by hybrid nanoparticle (Fe3O4-Ag) dependent on shape factor. J. Mol. Liq. 262(15), 376–388 (2018a)
Ghadikolaei, S.S., Hosseinzadeh, K., Ganji, D.D.: Numerical study on magnetohydrodynic CNTs-water nanofluids as a micropolar dusty fluid influenced by non-linear thermal radiation and joule heating effect. Powder Technol. 340, 389–399 (2018d)
Ghadikolaei, S.S., Hosseinzadeh, K., Hatamic, M., Ganji, D.D.: MHD boundary layer analysis for micropolar dusty fluid containing hybrid nanoparticles (Cu-Al2O3) over a porous medium. J. Mol. Liq. 268(15), 813–823 (2018b)
Ghadikolaei, S.S., Hosseinzadeh, K., Hatamic, M., et al.: Investigation for squeezing flow of ethylene glycol (C2H6O2) carbon nanotubes (CNTs) in rotating stretching channel with nonlinear thermal radiation. J. Mol. Liq. 63(1), 10–21 (2018c)
Ghadikolaei, S.S., Hosseinzadeh, K., Yassari, M., et al.: Boundary layer analysis of micropolar dusty fluid with TiO2 nanoparticles in a porous medium under the effect of magnetic field and thermal radiation over a stretching sheet. J. Mol. Liq. 244, 374–389 (2017b)
Ghadikolaei, S.S., Yassari, M., Sadeghi, H., et al.: Investigation on thermophysical properties of Tio2–cu/H2O hybrid nanofluid transport dependent on shape factor in MHD stagnation point flow. Powder Technol. 322, 428–438 (2017a)
GhadikolaeiaKh, S.S., Hosseinzadeh, D.D.: Ganji, investigation on ethylene glycol-water mixture fluid suspend by hybrid nanoparticles (TiO2-CuO) over rotating cone with considering nanoparticles shape factor. J. Mol. Liq. 272(15), 226–236 (2018)
Hamilton, R.L., Crosser, O.K.: Thermal conductivity of heterogeneous two component systems. Indus. Eng. Chem. Fund. 1, 187–191 (1962)
Hosseinzadeh, K., Afsharpanah, F., Zamani, S., et al.: A numerical investigation on ethylene glycol-titanium dioxide nanofluid convective flow over a stretching sheet in presence of heat generation/absorption. Case Stud Thermal Eng. 12, 228–236 (2018)
Hosseinzadeh, K., Asadi, A., Mogharrebi, A.R., et al.: Entropy generation analysis of (CH2OH)2containing CNTs nanofluid flow under effect of MHD and thermal radiation. Case Stud Thermal Eng. 14, 100482 (2019)
Hosseinzadeh, K., JafarianAmiri, A., SaediArdahaie, S., Ganji, D.D.: Effect of variable lorentz forces on nanofluid flow in movable parallel plates utilizing analytical method. Case Stud Thermal Eng. 10, 595–610 (2017)
Jiang, Y., Zhou, X.: Heat transfer and entropy generation analysis of nanofluids thermocapillary convection around a bubble in a cavity. Int. Commun. Heat Mass Transfer. 105, 37–45 (2019b)
Jiang, Y.N., Xu, Z.: Numerical investigation of nanofluid thermocapillary convection based on two-phase mixture model. Microgravity Sci. Technol. 29(5), 365–370 (2017)
Jiang, Y.N., Zhou, X.M.: Numerical study of heat transfer and entropy generation of nanofluids buoyant-thermocapillary convection around a gas bubble. Microgravity Sci. Technol. 31(2), 195–206 (2019a)
Kenning, D.B.R., Kao, Y.S.: Convective heat transfer to water containing bubbles: enhancement not dependent on thermocapillarity. Int. J. Heat Mass Transf. 15(9), 1709–1717 (1972)
Khan, M.S., Abid, M., Ali, H.M., et al.: Comparative performance assessment of solar dish assisted s-CO2 Brayton cycle using nanofluids. Appl. Therm. Eng. 148(5), 295–306 (2019)
Khanafer, K., Vafai, K.: A critical synthesis of thermophysical characteristics of nanofluids. Int. J. Heat Mass Transf. 54, 4410–4428 (2011)
Kim, J., Benton, J.F.: Highly subcooled pool boiling heat transfer at various gravity levels. Int. J. Heat Fluid Flow. 23(4), 497–508 (2002)
Kolsi, L., Lajnef, E., Aich, W., et al.: Numerical investigation of combined buoyancy-thermocapillary convection and entropy generation in 3D cavity filled with Al2O3 nanofluid. Alexandria Eng. J. 56(1), 71–79 (2017)
Koukan, E., Wozniak, G., Wozniak, K., Siekmann, J.: Experimental study of flow fields around small gas bubbles under the combined action of buoyancy and thermocapillarity. Heat Mass Transfer/Waerme-und Stoffuebertragung. 37(4–5), 437–441 (2001)
Larkin, B.K.: Thermocapillary flow around hemispherical bubble. AIChE J. 16(1), 101–107 (1970)
Liu, F., Cai, Y., Wang, L.Q., Zhao, J.: Effects of nanoparticle shapes on laminar forced convective heat transfer in curved ducts using two-phase model. Int. J. Heat Mass Transf. 116, 292–305 (2018)
Manninen, M., Taivassalo, V., Kallio, S.: On the mixture model for multiphase flow, 288, technical research Center of Finland. VTT Publications. 3(2), 9–18 (1996)
O’Shaughnessy, S.M., Robinson, A.J.: Numerical investigation of bubble induced Marangoni convection: some aspects of bubble geometry. Microgravity Sci. Technol. 20(3–4), 319–325 (2008)
O’Shaughnessy, S.M., Robinson, A.J.: Numerical investigation of bubble induced Marangoni convection. Interdisciplinary Trans. Phenom.: Ann. N.Y. Acad. Sci. 1161, 304–320 (2009a)
O’Shaughnessy, S.M., Robinson, A.J.: The influence of the magnitude of gravitational acceleration on the Marangoni convection about an isolated bubble under a heated wall. Heat Transfer Eng. 30, 1–13 (2009b)
O’Shaughnessy, S.M., Robinson, A.J.: Heat transfer near an isolated hemispherical gas bubble: the combined influence of thermocapillarity and buoyancy. Int. J. Heat Mass Transf. 62, 422–434 (2013)
O’Shaughnessy, S.M., Robinson, A.J.: Convective heat transfer due to thermal Marangoni flow about two bubbles on a heated wall. Int. J. Therm. Sci. 78, 101–110 (2014)
Petrovic, S., Robinson, T., Judd, R.L.: Marangoni heat transfer in subcooled nucleate pool boiling. Int. J. Heat Mass Transf. 47(23), 5115–5128 (2004)
Raj, R., Jungho, K., McQuillen, J.: Subcooled pool boiling in variable gravity environments. J. Heat Transfer. 131, 091502–091510 (2009)
Saleh, H., Hashim, I.: Buoyant Marangoni convection of nanofluids in square cavity. Appl. Math. Mech. 36(9), 1169–1184 (2015)
Schiller, L., Naumann, A.: A drag coefficient correlation. Z Ver. Deutsch Ing. 77(1), 318–320 (1935)
Sheikholeslami, M., Chamkha, A.J.: Influence of Lorentz forces on nanofluid forced convection considering Marangoni convection. J. Mol. Liquids. 225, 750–757 (2017)
Sheikholeslami, M., Jafaryar, M., Hedayat, M., Nguyen, T.K., Bakouri, M.: Heat transfer and turbulent simulation of nanomaterial due to compound turbulator including irreversibility analysis. Int J Heat Mass Transfer. 137, 1290–1300 (2019)
Shojaei, A., Amiri, A.J., Ardahaie, S.S., et al.: Hydrothermal analysis of non-Newtonian second grade fluid flow on radiative stretching cylinder with Soret and Dufour effects. Case Stud Thermal Eng. 13, 100384 (2019)
Straub, J.: The role of surface tension for two-phase heat and mass transfer in the absence of gravity. Exp. Thermal Fluid Sci. 9(3), 253–273 (1994)
Straub, J., Betz, J., Marek, R.: Enhancement of heat transfer by thermocapillary convection around bubbles-a numerical study. Numer Heat Transfer: Part A. 25, 501–518 (1994)
Straub, J., Zell, M., Vogel, B.: What we learn from boiling under microgravity. Microgravity Sci. Technol. 6(4), 239–247 (1993)
Timofeeva, E.V., Routbort, J.L., Singh, D.: Particle shape effects on thermophysical properties of alumina nanofluids. J. Appl. Phys. 106, 014304–014310 (2009)
Wen, D., Ding, Y.: Experimental investigation into the pool boiling heat transfer of aqueous based γ-alumina nanofluids. J. Nanopart. Res. 7(2–3), 265–274 (2005)
Wozniak, G.: Optical whole-field methods for thermo-convective flow analysis in microgravity. Measure. Sci. Technol. 10(10), 878–885 (1999)
Wozniak, G., Wozniak, K.: Buoyancy and thermocapillary flow analysis by the combined use of liquid crystals and PIV. Exp. Fluids. 17(3), 141–146 (1994)
Wozniak, K., Wozniak, G.: Temperature gradient driven flow experiments of two interacting bubbles on a hot wall. Heat Mass Transfer/Waerme-und Stoffuebertragung. 33(5–6), 363–369 (1998)
Wozniak, K., Wozniak, G., Roesgen, T.: Particle-image-velocimetry applied to thermocapillary convection. Exp. Fluids. 10(1), 12–16 (1990)
Zangooee, M.R., Hosseinzadeh, K., Ganji, D.D.: Hydrothermal analysis of MHD nanofluid (TiO2-GO) flow between two radiative stretchable rotating disks using AGM. Case Stud Thermal Eng. 14, 100460 (2019)
Zhuang, Y.J., Zhu, Q.Y.: Analysis of entropy generation in combined buoyancy-Marangoni convection of power-law nanofluids in 3D heterogeneous porous media. Int. J. Heat Mass Transf. 118, 686–707 (2018)
Acknowledgments
The work was supported by National Natural Science Foundation of China (No.51976080).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Jiang, Y., Zhou, X. & Wang, Y. Effects of Nanoparticle Shapes on Heat and Mass Transfer of Nanofluid Thermocapillary Convection around a Gas Bubble. Microgravity Sci. Technol. 32, 167–177 (2020). https://doi.org/10.1007/s12217-019-09757-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12217-019-09757-z