Skip to main content
Log in

Effect of the Initial Conditions on the Growth of Thermoelectric Instabilities During Parabolic Flights

Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

The dielectrophoretic force is applied between two differentially heated cylinders under microgravity conditions obtained during parabolic flight. The electric field is activated at various moments of the microgravity phase in order to control the initial condition at which the dielectrophoretic force intervenes. The time evolution of the flow is measured by particle image velocimetry and that of thermal plumes is captured by shadowgraphy. The growth rate of the instability during microgravity conditions is determined from these measurements. It is found that the closer the initial condition to the purely conductive state is, the faster the instability grows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Chandra, B., Smylie, D.E.: A laboratory model of thermal convection under a central force field. Geophys. Fluid Dynamics 3, 211–224 (1972)

    Article  Google Scholar 

  • Choi, I., Korpela, S.: Stability of the conduction regime of natural convection in a tall vertical annulus. J. Fluid Mech. 99, 725–738 (1980)

    Article  Google Scholar 

  • Futterer, B., Krebs, A., Plesa, A.C., Zaussinger, F., Hollerbach, R., Breuer, D., Egbers, C.: Sheet-like and plume-like thermal flow in a spherical convection experiment performed under microgravity. J. Fluid Mech. 735, 647–683 (2013)

    Article  Google Scholar 

  • Futterer, B., Dahley, N., Egbers, C.: Thermal electro-hydrodynamic heat transfer augmentation in vertical annuli by the use of dielectrophoretic forces through a.c. electric field. Int. J. Heat Mass Transfer 93, 144–154 (2016)

    Article  Google Scholar 

  • Hart, J.E., Glatzmaier, G.A., Toomre, J.: Space-laboratory and numerical simulations of thermal convection in a rotating hemispherical shell with radial gravity. J. Fluid Mech. 173, 519–544 (1986)

    Article  Google Scholar 

  • Kang, C., Mutabazi, I.: Dielectrophoretic buoyancy and heat transfer in a dielectric liquid contained in a cylindrical annular cavity. J. Appl. Phys. 125, 184902 (2019)

    Article  Google Scholar 

  • Kang, C., Yang, K. -S., Mutabazi, I.: Thermal effect on large- aspect-ratio Couette-Taylor system: numerical simulations. J. Fluid Mech. 771, 57–78 (2015)

    Article  MathSciNet  Google Scholar 

  • Kang, C., Meyer, A., Mutabazi, I.: Radial buoyancy effects on momentum and heat transfer in a circular Couette flow. Phys. Rev. F 2, 053901 (2017)

    Google Scholar 

  • Kang, C., Meyer, A., Yoshikawa, H.N., Mutabazi, I.: Numerical study of thermal convection induced by centrifugal buoyancy in a rotating cylindrical annulus. Phys. Rev. F 4, 043501 (2019)

    Google Scholar 

  • Kleine, H., Grönig, H., Takayama, K.: Simultaneous shadow, Schlieren and interferometric visualisation of compressible flows. Opt. Lasers Eng. 44, 170–189 (2006)

    Article  Google Scholar 

  • Landau, L.D., Lifshitz, E.M.: Electrodynamics of Continuous Media, 2Nd Ed. Landau and Lifshitz Course of Theoretical Physics, vol. 8. Elsevier Butterworth-Heinemann, Burlington (1984)

    Google Scholar 

  • Lotto, M.A., Johnson, K.M., Nie, C.W., Klaus, D.M.: The impact of reduced gravity on free convective heat transfer from a finite, flat, vertical plate. Microgravity Sci. Technol. 29, 371–379 (2017)

    Article  Google Scholar 

  • Malik, S.V., Yoshikawa, H.N., Crumeyrolle, O., Mutabazi, I.: Thermo-electro-hydrodynamic instabilities in a dielectric liquid under microgravity. Acta Astronaut. 81, 563–569 (2012)

    Article  Google Scholar 

  • Meier, M., Jongmanns, M., Meyer, A., Seelig, T., Egbers, C., Mutabazi, I.: Flow patterns and heat transfer in a cylindrical annulus under 1g and low-g conditions: experiments. Microgravity Sci. Technol. 30, 699–712 (2018)

    Article  Google Scholar 

  • Meyer, A., Jongmanns, M., Meier, M., Egbers, C., Mutabazi, I.: Thermal convection in a cylindrical annulus under a combined effect of the radial and vertical gravity. C. R. Mécanique 345, 11–20 (2017)

    Article  Google Scholar 

  • Meyer, A., Crumeyrolle, O., Mutabazi, I., Meier, M., Jongmanns, M., Renoult, M.-C., Egbers, C.: Flow patterns and heat transfer in a cylindrical annulus under 1g and low-g conditions: theory and simulation. Microgravity Sci. Technol. 30, 653–662 (2018)

    Article  Google Scholar 

  • Mutabazi, I., Yoshikawa, H.N., Tadie Fogaing, M., Travnikov, V., Crumeyrolle, O., Futterer, B., Egbers, C.: Thermo-electro-hydrodynamic convection under microgravity: a review. Fluid Dyn. Res. 48, 061413 (2016)

    Article  MathSciNet  Google Scholar 

  • Pletser, V., Rouquette, S., Friedrich, U., Clervoy, J.-F., Gharib, T., Gai, F., Mora, C.: The first European Parabolic Flight Campaign with the Airbus A310 Zero-G. Microgravity Sci. Technol. 28, 587–601 (2016)

    Article  Google Scholar 

  • Roberts, P.H.: Electrohydrodynamic convection. Q. J. Mechanics Appl. Math. 22, 211–220 (1969)

    Article  Google Scholar 

  • Schöpf, W., Patterson, J.C., Brooker, A.M.H.: Evaluation of the shadoygraph method for the convective flow in a side-heated cavity. Exp. Fluids 22, 331–340 (1996)

    Article  Google Scholar 

  • Seelig, T., Meyer, A., Gerstner, P., Meier, M., Jongmanns, M., Baumann, M., Heuveline, V., Egbers, C.: Dielectrophoretic force-driven convection in annular geometry under Earth’s gravity. Int. J. Heat Mass Transfer 139, 386–398 (2019)

    Article  Google Scholar 

  • Settles, G.S.: Schlieren and shadowgraph techniques, visualizing phenomena in transparent media. Ed. Springer (2001)

  • Takashima, M.: Electrohydrodynamic instability in a dielectric fluid between two coaxial cylinders. Mech. Appl. Math. 33, 93–103 (1980)

    Article  MathSciNet  Google Scholar 

  • Travnikov, V., Crumeyrolle, O., Mutabazi, I.: Numerical investigation of the heat transfer in cylindrical annulus with a dielectric fluid under microgravity. Phys. Fluids 27, 054103 (2015)

    Article  Google Scholar 

  • Travnikov, V., Crumeyrolle, O., Mutabazi, I.: Influence of the thermo-electric coupling on the heat transfer in cylindrical annulus with a dielectric fluid under microgravity. Acta Astronaut. 129, 88–94 (2016)

    Article  Google Scholar 

  • Turnbull, R.J.: Effect of dielectrophoretic forces on the bénard instability. Phys. Fluids 12, 1809–1815 (1969)

    Article  Google Scholar 

  • de Vahl Davis, G., Thomas, R.W.: Natural convection between concentric vertical cylinders. Phys. Fluids 12, 198–207 (1969)

    Google Scholar 

  • Yavorskaya, I.M., Fomina, N.I., Belyaev, Y.N.: A simulation of central-symmetry convection in microgravity conditions. Acta Astronaut. 11, 179–183 (1984)

    Article  Google Scholar 

  • Yoshikawa, H.N., Tadie Fogaing, M., Crumeyrolle, O., Mutabazi, I.: Dielectrophoretic rayleigh-bénard convection under microgravity conditions. Phys. Rev. E 87, 043003 (2013)

    Article  Google Scholar 

  • Yoshikawa, H.N., Crumeyrolle, O., Mutabazi, I.: Dielectrophoretic force-driven thermal convection in annular geometry, Phys. Fluids 25, 024106 (2013)

    Article  Google Scholar 

  • Zaussinger, F., Krebs, A., Travnikov, V., Egbers, C.: Recognition and tracking of convective flow patterns using Wollaston shearing interferometry. Adv. Space Res. 60(6), 1327–1344 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The present work is a part of the CNRS LIA 1092 ISTROF. A. Meyer, M. Meier and M. Jongmanns acknowledge the funding from the German Federal Ministry for Economic Affairs and Energy (BMWi) via the Space Flight Management department of the German Aerospace Center DLR under grant no. 50WM1644 and 50WM1944. This work benefited from the finanacial support of the French Space Agency (CNES) and the French National Research Agency (ANR) through the program “Investissements d’Avenir” (ANR-10LABX-09-01) LABEX EMC3. T. Seelig is funded by DFG (EG100/20-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Meyer.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Thirty Years of Microgravity Research - A Topical Collection Dedicated to J. C. Legros

Guest Editor: Valentina Shevtsova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meyer, A., Meier, M., Jongmanns, M. et al. Effect of the Initial Conditions on the Growth of Thermoelectric Instabilities During Parabolic Flights. Microgravity Sci. Technol. 31, 715–721 (2019). https://doi.org/10.1007/s12217-019-09755-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-019-09755-1

Keywords

Navigation