Abstract
The flow regimes and pressure drop in a slit microchannel with a height of 164 μm and width of 10 mm are studied experimentally. The boundaries between the regimes are precisely determined using the developed procedure. The homogeneous flow model and the separated flow model are considered for determining the frictional pressure drop. Experimental data are compared with theoretical models. For the homogeneous flow model, the Dukler correlation gives good agreement with experimental data with a mean absolute error of 12%. A new correlation, which describes the experimental data with a mean absolute error of 8.1%, is proposed for the homogeneous flow model. For the separated flow model, the Hwang and Kim correlation gives the best agreement with a mean absolute error of 12.8%. The dependence of the pressure drop in the film flows (annular and stratified regimes) on the mass gas quality has been investigated. It is shown that the minimal pressure drop for the film flows is achieved in the stratified regime; thus, it is the most promising for the use in technical applications.
Similar content being viewed by others
Abbreviations
- D :
-
Diameter, m
- D h :
-
Hydraulic diameter, m
- L :
-
Channel length, m
- b :
-
Channel width, m
- h :
-
Channel height,m
- z :
-
Stream-wise coordinate, m
- S :
-
Cross sectional area, m2
- S ch :
-
Observed microchannel area in, m2
- S bf :
-
Area of liquid film on bottom microchannel wall, m2
- S uf :
-
Area of liquid film on upper microchannel wall, m2
- F :
-
Bubble formation frequency, Hz
- \( {U}_{sl}=\frac{Q_l}{b\cdot h} \) :
-
Superficial liquid velocity, m/s
- \( {U}_{sg}=\frac{Q_g}{b\cdot h} \) :
-
Superficial gas velocity, m/s
- g :
-
Acceleration of gravity, m/s2
- P :
-
Pressure, Pа
- G :
-
Mass flux, kg/m2s
- Q :
-
Volumetric flow rate, m3/s
- ρ :
-
Density, kg/m3
- σ :
-
Surface tension, N/m
- μ :
-
Dynamic viscosity, kg/m ⋅ s
- ε :
-
Roughness, m
- \( {\delta}_c=\sqrt{\frac{\sigma }{g\left({\rho}_l-{\rho}_g\right)}} \) :
-
Capillary constant, m
- τ :
-
Shear stress, kg/m ⋅ s2
- \( f=\frac{2{\tau}_w}{\rho {U}^2} \) :
-
Fanning friction factor
- \( {\mathit{\operatorname{Re}}}_l=\frac{G\left(1-x\right){D}_h}{\mu_l} \) :
-
Liquid Reynolds number
- \( {\mathit{\operatorname{Re}}}_g=\frac{GxD_h}{\mu_g} \) :
-
Gas Reynolds number
- \( {\mathit{\operatorname{Re}}}_{lo}=\frac{GD_h}{\mu_l} \) :
-
Reynolds number of liquid only
- \( {\mathit{\operatorname{Re}}}_{go}=\frac{GD_h}{\mu_g} \) :
-
Reynolds number of gas only
- \( {Su}_{go}=\frac{\rho_g\sigma {D}_h}{\mu_g^2} \) :
-
Suratman number of gas only
- \( Eo=\frac{g\left({\rho}_l-{\rho}_g\right){D}_h^2}{\sigma } \) :
-
Eotvos number
- \( {N}_{conf}=\frac{1}{Eo^2}=\sqrt{\frac{\sigma }{g\left({\rho}_l-{\rho}_g\right){D}_h^2}} \) :
-
Confinement number
- \( {We}_{lo}=\frac{G^2{D}_h}{\rho_l\sigma } \) :
-
Weber number of liquid only
- \( {We}_{tp}=\frac{G^2{D}_h}{\rho_{tp}\sigma } \) :
-
Two-phase Weber number
- \( x=\frac{\rho_g{Q}_g}{\rho_g{Q}_g+{\rho}_l{Q}_l} \) :
-
Gas quality
- \( \beta =\frac{U_{sg}}{U_{sg}+{U}_{sl}} \) :
-
Homogeneous void fraction
- \( X=\sqrt{\frac{{\left(\frac{dP}{dL}\right)}_l}{{\left(\frac{dP}{dL}\right)}_g}} \) :
-
Martinelli parameter
- l :
-
Liquid
- g :
-
Gas
- lo :
-
Liquid only
- go :
-
Gas only
- tp :
-
Two phase
- h :
-
Hydraulic
- w :
-
Wall
- sl :
-
Superficial liquid
- sg :
-
Superficial gas
- vv :
-
Laminar liquid – laminar gas
- vt :
-
Laminar liquid – turbulent gas
- tv :
-
Turbulent liquid – laminar gas
- tt :
-
Turbulent liquid – turbulent gas
- pred :
-
Predicted
- exp :
-
Experimental
References
Arias, S., Montlaur, A.: Influence of contact angle boundary condition on CFD simulation of T-junction. Microgravity Sci. Technol. 30(4), 435–443 (2018)
Awad, M.M., Muzychka, Y.S.: Effective property models for homogeneous two-phase flows. Exp. Thermal Fluid Sci. 33(1), 106–113 (2008)
Bar-Cohen, A.: Gen 3 “embedded” cooling: key enabler for energy efficient data centers. IEEE Trans. Comp. Pack. Man. Technol. 7(8), 1206–1211 (2017)
Bar-Cohen, A., Rahim, E.: Modeling and prediction of two-phase microgap channel heat transfer characteristics. Heat Transf. Eng. 30(8), 601–625 (2009)
Beattie, D.R.H., Whalley, P.B.: A simple two-phase frictional pressure drop calculation method. Int. J. Multiphase Flow. 8(1), 83–87 (1982)
Bekezhanova, V. B., Goncharova, O. N.: Thermocapillary convection with phase transition in the 3D channel in a weak gravity field. Microgravity Sci. Technol. 31(4), 357–376 (2019)
Chen, I.Y., Yang, K.S., Wang, C.C.: Two-phase pressure drop of air-water in small horizontal tubes. J. Thermophys. Heat Transf. 15(4), 409–415 (2001)
Chinnov, E.A., Ron’shin, F.V., Kabov, O.A.: Regimes of two-phase flow in micro- and minichannels. Thermophys. Aeromech. 22(3), 265–284 (2015)
Chinnov, E.A., Ron'shin, F.V., Kabov, O.A.: Two-phase flow patterns in short horizontal rectangular microchannels. Int. J. Multiphase Flow. 80, 57–68 (2016)
Chisholm, D.: A theoretical basis for the Lockhart-Martinelli correlation for two-phase flow. Int. J. Heat Mass Transf. 10(12), 1767–1778 (1967)
Chung, P.Y., Kawaji, M.: The effect of channel diameter on adiabatic two-phase flow characteristics in microchannels. Int. J. Multiphase Flow. 30(7–8), 735–761 (2004)
Cicchitti, A., Lombardi, C., Silvestri, M., Soldaini, G., Zavattarelli, R.: Two-Phase Cooling Experiments: Pressure Drop, Heat Transfer and Burnout Measurements Energia Nucl. 7, 407–425 (1960)
Dukler, A.E., Wicks III, M., Cleveland, R.G.: Frictional pressure drop in two-phase flow: B. an approach through similarity analysis. AICHE J. 10(1), 44–51 (1964)
Gatapova, E.Y., Kabov, O.A., Kuznetsov, V.V., Legros, J.: Evaporating shear-driven liquid film flow in minichannel with local heat source. J. Eng. Thermophys. 13(2), 179–197 (2005)
Gerbino, F., Mameli, M., Di Marco, P., Filippeschi, S.: Local void fraction and fluid velocity measurements in a capillary channel with a single optical probe. Interfacial Phenom. Heat Transf. 5(1), 23–42 (2017)
Guo, K., Li, H., Feng, Y., Zhao, J., & Wang, T.: Numerical Investigation on Single Bubble and Multiple Bubbles Growth and Heat Transfer During Flow Boiling in A Microchannel Using the VOSET Method. Microgravity Sci. Technol. 31(4), 381–393 (2019)
Hwang, Y.W., Kim, M.S.: The pressure drop in microtubes and the correlation development. Int. J. Heat Mass Transf. 49(11–12), 1804–1812 (2006)
Iorio, C.S., Kabov, O.A., Legros, J.C.: Thermal patterns in evaporating liquid. Microgravity Sci. Technol. 19(3–4), 27–29 (2007)
Jia, J.L., Guo, H., Fang, Y.E., Fang, C., Kabov, O.A.: Effect of parallel channels orientation on two-phase flow and performance of a direct methanol fuel cell. Interfacial Phenom. Heat Transf. 6(3), 157–208 (2018)
Kabov, O.A., Legros, J.K., Marchuk, I.V., Sheid, B.: Deformation of the free surface in a moving locally-heated thin liquid layer. Fluid Dyn. 36(3), 521–528 (2001)
Kabov, O.A., Scheid, B., Sharina, I.A., Legros, J.C.: Heat transfer and rivulet structures formation in a falling thin liquid film locally heated. Int. J. Therm. Sci. 41(7), 664–672 (2002)
Kabova, Y.O., Kuznetsov, V.V., Ohta, H., Kabov, O.A.: Dynamics and evaporation of a thin locally heated liquid film sheared by a vapor flow in a microchannel. Interfacial Phenom. Heat Transf. 5(3), 231–249 (2017)
Kim, S.M., Mudawar, I.: Universal approach to predicting two-phase frictional pressure drop for adiabatic and condensing mini/micro-channel flows. Int. J. Heat Mass Transf. 55(11–12), 3246–3261 (2012)
Lee, H.J., Lee, S.Y.: Pressure drop correlations for two-phase flow within horizontal rectangular channels with small heights. Int. J. Multiphase Flow. 27(5), 783–796 (2001)
Lee, J., Mudawar, I.: Two-phase flow in high-heat-flux micro-channel heat sink for refrigeration cooling applications: part II—heat transfer characteristics. Int. J. Heat Mass Transf. 48(5), 941–955 (2005)
Li, W., Wu, Z.: A general correlation for adiabatic two-phase pressure drop in micro/mini-channels. Int. J. Heat Mass Transf. 53(13–14), 2732–2739 (2010)
Lin, S., Kwok, C.C.K., Li, R.Y., Chen, Z.H., Chen, Z.Y.: Local frictional pressure drop during vaporization of R-12 through capillary tubes. Int. J. Multiphase Flow. 17(1), 95–102 (1991)
Lockhart, R.W., Martinelli, R.C.: Proposed correlation of data for isothermal two-phase, two-component flow in pipes. Chem. Eng. Prog. 45(1), 39–48 (1949)
McAdams, W.H.: Vaporization inside horizontal tubes-II, Benzene oil mixtures. Trans. ASME. 64, 193–200 (1942)
Mishima, K., Hibiki, T.: Some characteristics of air-water two-phase flow in small diameter vertical tubes. Int. J. Multiphase Flow. 22(4), 703–712 (1996)
Moriyama, K., Inoue, A., Ohira, H.: The thermohydraulic characteristics of two-phase flow in extremely narrow channels (the frictional pressure drop and heat transfer boiling two-phase flow, analytical model). Heat Transf. Japan. Res. 21(8), 838–856 (1992)
Nasr, M.H., Green, C.E., Kottke, P.A., Zhang, X., Sarvey, T.E., Joshi, Y.K., Bakir, M.S., Fedorov, A.G.: Flow regimes and convective heat transfer of refrigerant flow boiling in ultra-small clearance microgaps. Int. J. Heat Mass Transf. 108, 1702–1713 (2017)
Owens, W. L.: Two-phase pressure gradient. Int. Dev. in heat transfer Part II. ASME, New York, United States (1961)
Qu, W., Mudawar, I.: Measurement and prediction of pressure drop in two-phase micro-channel heat sinks. Int. J. Heat Mass Transf. 46(15), 2737–2753 (2003)
Ronshin, F., Chinnov, E.: Experimental characterization of two-phase flow patterns in a slit microchannel. Exp. Thermal Fluid Sci. 103, 262–273 (2019)
Serizawa, A., Feng, Z., Kawara, Z.: Two-phase flow in microchannels. Exp. Thermal Fluid Sci. 26(6–7), 703–714 (2002)
Shah, R. K., London A. L.: Laminar flow forced convection in ducts: a source book for compact heat exchanger analytical data. Academic Press. 78–138 (1978)
Sun, L., Mishima, K.: Evaluation analysis of prediction methods for two-phase flow pressure drop in mini-channels. Int. J. Multiphase Flow. 35(1), 47–54 (2009)
Wang, C.C., Chiang, C.S., Lu, D.C.: Visual observation of two-phase flow pattern of R-22, R-134a, and R-407C in a 6.5-mm smooth tube. Exp. Thermal Fluid Sci. 15(4), 395–405 (1997)
Yan, Y.Y., Lin, T.F.: Evaporation heat transfer and pressure drop of refrigerant R-134a in a small pipe. Int. J. Heat Mass Transf. 41(24), 4183–4194 (1998)
Yang, C.Y., Webb, R.L.: Friction pressure drop of R-12 in small hydraulic diameter extruded aluminum tubes with and without micro-fins. Int. J. Heat Mass Transf. 39(4), 801–809 (1996)
Zhang, W., Hibiki, T., Mishima, K.: Correlations of two-phase frictional pressure drop and void fraction in mini-channel. Int. J. Heat Mass Transf. 53(1–3), 453–465 (2010)
Acknowledgments
The work was financially supported by the grant of the Russian Science Foundation No. 18-19-00407.
Author information
Authors and Affiliations
Corresponding author
Additional information
This article belongs to the Topical Collection: Thirty Years of Microgravity Research - A Topical Collection Dedicated to J. C. Legros
Guest Editor: Valentina Shevtsova
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Ronshin, F.V., Dementyev, Y.A., Chinnov, E.A. et al. Experimental Investigation of Adiabatic Gas-Liquid Flow Regimes and Pressure Drop in Slit Microchannel. Microgravity Sci. Technol. 31, 693–707 (2019). https://doi.org/10.1007/s12217-019-09747-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12217-019-09747-1