Skip to main content

Advertisement

Log in

Near-Critical Behavior of Fick Diffusion Coefficient in Taylor Dispersion Experiments

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

This paper is addressing the challenge related to understanding the experimental results obtained by Taylor dispersion technique when working under high pressure with supercritical carbon dioxide (CO2). We discuss typical experimental problems that arise when using the Taylor dispersion method for measuring diffusion coefficients in the supercritical fluids. The diffusion coefficients of the two samples in supercritical carbon dioxide were measured along the isobars at different temperatures. The diffusion coefficients of ethanol in supercritical CO2 have been measured in the temperature range from 304.15 to 343 K along the isobar p = 12.0 MPa. Experiments with the gaseous CH4/CO2 mixture with a mole fraction of CH4 = 0.2052 mol mol− 1 have been conducted in the temperature range from 317.85K to 343.15 K along the isobar p = 12.5 MPa. A comparative analysis of a diffusion behavior of these very different mixtures is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alizadeh, A., Nieto de Castro, C.A., Wakeham, W.A.: The theory of the taylor dispersion technique for liquid diffusivitymeasurements. Int. J. Thermophys. 1(3), 243–284 (1980)

    Article  Google Scholar 

  • Ancherbak, S., Santos, C., Legros, J.C., Mialdun, A., Shevtsova, V.: Development of a high-pressure set-up for measurements of binary diffusion coefficients in supercritical carbon dioxide. Eur. Phys. J E 39(11), 111 (2016)

    Article  Google Scholar 

  • Aris, R.: On the dispersion of a solute in a fluid flowing through a tube. Proc. R. Soc. London A 235, 67–77 (1956)

    Article  Google Scholar 

  • Bou-Ali, M.M., Ahadi, A., Alonso de Mezquia, D., Galand, Q., Gebhardt, M., Khlybov, O., Köhler, W., Larrañaga, M., Legros, J.C., Lyubimova, T., Mialdun, A., Ryzhkov, I., Saghir, M.Z., Shevtsova, V., Van Vaerenbergh, S.: Benchmark values for the soret, thermodiffusion and molecular diffusion coefficients of the ternary mixture tetralin+isobutylbenzene+n-dodecane with 0.8-0.1-0.1 mass fraction. Eur. Phys. J. E 38(4), 30 (2015)

    Article  Google Scholar 

  • Cadogan, S.P., Maitland, G.C., Trusler, J.P.M.: Diffusion coefficients of co2 and n2 in water at temperatures between 298.15 k and 423.15 k at pressures up to 45 mpa. J. Chem. Eng. Data. 59(2), 519–525 (2014)

    Article  Google Scholar 

  • Erdogan, M.E., Chatwin, P.: The effects of curvature and buoyancy on the laminar dispersion ofsolute in a horizontal tube. J. Fluid Mech. 29, 3465–484 (1967)

    Article  Google Scholar 

  • Firoozabadi, A., Myint, P.C.: Prospects for subsurface CO2 sequestration. AIChE J 56, 1398–1405 (2010)

    Article  Google Scholar 

  • Funazukuri, T., Yi Kong, C., Kagei, S.: Binary diffusion coefficients in supercritical fluids. recent progress in measurements and correlations for binary diffusion coefficients. J. Supercrit. Fluids 38(2), 201–210 (2006)

    Article  Google Scholar 

  • Guevara-Carrion, G., Ancherbak, S., Mialdun, A., Vrabec, J., Shevtsova, V.: Diffusion of methane in supercritical carbon dioxide across the widomline. Sci. Rep. 9, 8466 (2019)

    Article  Google Scholar 

  • Han, S.: Anomalous change in the dynamic of a supercritical fluid. Phys. Rev. E 84, 051204 (2011)

    Article  Google Scholar 

  • Leaist, D.G.: Ternary diffusion coefficients of 18-crown-6 ether-kcl-water by direct least-squares analysis of taylor dispersion measurements. J .Chem. Soc. Faraday Trans. 87, 597–601 (1991)

    Article  Google Scholar 

  • Leaist, D.G.: Determination of ternary diffusion coefficients by the Taylordispersion method. J. Phys. Chem. 94, 5180–5183 (2019)

    Article  Google Scholar 

  • Legros, J.C., Mialdun, A., Strizhak, P., Shevtsova, V.: Permeation of supercritical co2 through perfluoroelastomers. J. Supercrit. Fluids 126, 1–13 (2017)

    Article  Google Scholar 

  • Lemmon, E.W., Huber, M.L., McLinden, M.O.: NIST standard reference database 23: Reference fluid thermodynamic and transport properties-REFPROP, V ersion 9.1 (2013)

  • Levelt Sengers, J.M.H., Deiters, U.K., Klask, U., Swidersky, P, Schneider, G.M.: Application of the taylor dispersion method in supercritical fluids. Int. J Thermophys 14(4), 893–922 (1993)

    Article  Google Scholar 

  • Lin, R., Tavlarides, L.L.: Diffusion coefficients of diesel fuel and surrogate compounds in supercritical carbon dioxide. J. Supercrit. Fluids 52(1), 47–55 (2010)

    Article  Google Scholar 

  • Mialdun, A., Shevtsova, V.: Open questions on reliable measurements of Soret coefficients. Microgravity Sci. Technol. 21, 31–36 (2009)

    Article  Google Scholar 

  • Mialdun, A., Sechenyh, V., Legros, J.C., Ortiz de Zrate, J.M., Shevtsova, V.: Investigation of fickian diffusion in the ternary mixture of 1,2,3,4-tetrahydronaphthalene, isobutylbenzene, and dodecane. J. Chem. Phys. 139(10), 104903 (2013)

    Article  Google Scholar 

  • Mialdun, A., Ryzhkov, I., Khlybov, O., Lyubimova, T., Shevtsova, V.: Measurement of Soret coefficients in a ternary mixture of toluene-methanol-cyclohexane in convection-free environment. J. Chem. Phys. 148(4), 044506 (2018)

    Article  Google Scholar 

  • Nishiumi, H., Kubota, T.: Tracer diffusion coefficients of benzene in dense co2 at 313.2 Kand 8.5-30 MPa. Fluid Phase Equilib. 261, 146–151 (2007)

    Article  Google Scholar 

  • Nunge, R., Lin, T., Gill, W.: Laminar dispersion in curved tubes and channels. J. Fluid Mech. 51, 363–383 (1972)

    Article  Google Scholar 

  • Santos, C.I.A.V., Mialdun, A., Legros, J.C., Shevtsova, V.: Sorption equilibria and diffusion of toluene, methanol, and cyclohexane in/through elastomers. J. Applied Polymer Science 133(21), 43449 (2016)

    Article  Google Scholar 

  • Secuianu, C., Maitland, G.C., Trusler, J.P.M., Wakeham, W.A.: Mutual diffusion coefficients of aqueous kcl at high pressures measured by the taylor dispersion method. J. Chem. Eng. Data. 56(12), 4840–4848 (2011)

    Article  Google Scholar 

  • Taylor, G.: Dispersion of soluble matter in solvent flowing slowly through atube. Proc. R. Soc. London A 219 (1137), 186–203 (1953)

    Article  Google Scholar 

  • Taylor, G.: Conditions under which dispersion of a solute in a stream of solvent can be used to measure molecular diffusion. Proc. R. Soc. London A 225(1163), 473–477 (1954)

    Article  Google Scholar 

  • Thibeau, S., Chiquet, P., Prinet, C., Lescanne, M.: Lacq-Rousse CO2 capture and storage demonstration pilot: lessons learned from reservoir modelling studies. Energy Procedia 37, 6306–6316 (2013)

    Article  Google Scholar 

  • Triller, T., Bataller, H., Bou-Ali, M.M., Braibanti, M., Croccolo, F., Ezquerro, J.M., Galand, Q., Gavaldá, Jna, Lapeira, E., Laverón-Simavilla, A., Lyubimova, T., Mialdun, A., Ortiz de Zárate, J.M., Rodríguez, J., Ruiz, X., Ryzhkov, I.I., Shevtsova, V., Van Vaerenbergh, S., Köhler, W.: Thermodiffusion in ternary mixtures of water/Ethanol/Triethylene glycol: First report on the DCMIX3-Experiments performed on the international space station. Microgravity Sci. Technol. 30(3), 295–308 (2018)

    Article  Google Scholar 

  • Umezawa, S., Nagashima, A.: Measurement of the diffusion coefficients of acetone, benzene, and alkane in supercritical co2 by the taylor dispersion method. J. Supercrit. Fluids 5, 242–250 (1992)

    Article  Google Scholar 

  • Van Vaerenbergh, S., Legros, J.-C., Dupin, J.-C.: First results of soret coefficient measurement experiment. Adv. Space Res. 16(8), 69–81 (1995). EURECA Scientific Results

    Article  Google Scholar 

  • Van Vaerenbergh, S., Garandet, J.P., Praizey, J.P., Legros, J.C.: Reference soret coefficients of natural isotopes and diluted alloys of tin. Phys. Rev. E 58, 1866–1873 (1998a)

    Article  Google Scholar 

  • Van Vaerenbergh, S., Legros, J.C.: Soret coefficients of organic solutions measured in the microgravity SCM experiment and by the flow and bénard cells. J. Phys. Chem. B 102(22), 4426–4431 (1998b)

    Article  Google Scholar 

  • Van Vaerenbergh, S., Srinivasan, S., Saghir, M.Z.: Thermodiffusion in multicomponent hydrocarbon mixtures: Experimental investigations and computational analysis. J. Chem. Phys. 131(11), 114505 (2009)

    Article  Google Scholar 

  • Yi Kong, C., Funazukuri, T., Kagei, S.: Binary diffusion coefficients and retention factors for polar compounds in supercritical carbon dioxide by chromatographic impulse response method. J. Supercrit. Fluids 37(3), 359–366 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

YG, VG and VS acknowledge support by the PRODEX program of the Belgian Federal Science Policy Office. CIAVS is grateful for the funding granted by FEDER –European Regional Development Fund through the COMPETE Programme and FCT -Fundacao para a Ciencia e a Tecnologia, for the KIDIMIX project POCI-01-0145-FEDER-030271.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Gaponenko.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Thirty Years of Microgravity Research - A Topical Collection Dedicated to J. C. Legros

Guest Editor: Valentina Shevtsova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaponenko, Y., Gousselnikov, V., Santos, C.I.A.V. et al. Near-Critical Behavior of Fick Diffusion Coefficient in Taylor Dispersion Experiments. Microgravity Sci. Technol. 31, 475–486 (2019). https://doi.org/10.1007/s12217-019-09736-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-019-09736-4

Keywords

Navigation