Skip to main content
Log in

Influence of Composition Dependent Diffusion Coefficient, Viscosity and Relaxation Time on Evaporative Rayleigh-Bénard-Marangoni Instabilities Induced by Solvent Evaporation in a Polymer Solution

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

In this study, a linear stability analysis is performed for both monotonic and oscillatory modes within a horizontal polymer solution layer, which solely the solvent evaporates into air. The approach is based on general thermodynamic principles and also on the physics of the gas phase and its interactions with the liquid phase. Due to evaporation, the solvent mass fraction changes and cooling occurs at the liquid-gas interface. This can trigger solutal and thermal Rayleigh-Bénard-Marangoni instabilities in the system. For the monotonic mode, the effects of composition dependent diffusion coefficient and dynamic viscosity on the onset of Rayleigh-Bénard-Marangoni convection are studied. Moreover, the effect of different total heights of the liquid-gas system on the behavior of convection onset is considered. The results show that a variable diffusion coefficient and a variable viscosity can notably change the onset of instability for a polyisobutylene (PIB)/toluene solution. Our model for the monotonic mode is also satisfactorily compared with an experimental study. For the oscillatory mode, where the relaxation time is also composition dependent, we observe that very thin layers will be susceptible to an oscillatory instability when drying occurs in the system. Finally, an approximate model is derived exploiting the fact that the solutal Marangoni is by far the most dominant instability mechanism here. A negligible difference with respect to the full model confirms the predominance of the solutal Marangoni mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bassou, N., Rharbi, Y.: Role of Benard- Marangoni instabilities during solvent evaporation in polymer surface corrugations. Langmuir. 25(1), 624–632 (2008)

    Google Scholar 

  • Bekezhanova, V.B., Shefer, I.A.: Influence of gravity on the stability of evaporative convection regimes. Microgravity Sci Technol. 30(4), 543–560 (2018)

    Google Scholar 

  • Bird, R.B., Armstrong, R.C. and Hassager, O.: Dynamics of polymeric liquids. Vol. 1: Fluid mechanics (1987)

  • Bormashenko, E., Balter, S., Pogreb, R., Bormashenko, Y., Gendelman, O., Aurbach, D.: On the mechanism of patterning in rapidly evaporated polymer solutions: Is temperature-gradient-driven Marangoni instability responsible for the large-scale patterning? J. Colloid Interface Sci. 343(2), 602–607 (2010)

    Google Scholar 

  • Bratsun, D., Kostarev, K., Mizev, A., Mosheva, E.: Concentration-dependent diffusion instability in reactive miscible fluids. Phys. Rev. E. 92(1), 011003 (2015)

    Google Scholar 

  • Bratsun, D.A., Stepkina, O.S., Kostarev, K.G., Mizev, A.I., Mosheva, E.A.: Development of concentration-dependent diffusion instability in reactive miscible fluids under influence of constant or variable inertia. Microgravity Sci Technol. 28(6), 575–585 (2016)

    Google Scholar 

  • Cantú, A.A.: A study of the evaporation of a solvent from a solution—application to writing ink aging. Forensic Sci. Int. 219(1–3), 119–128 (2012)

    Google Scholar 

  • Chatterjee, B.K., Roy, S.C.: Viscosity divergence and gelation. Radiat. Phys. Chem. 74(6), 419–425 (2005)

    Google Scholar 

  • Colinet, P., Legros, J.C. and Velarde, M.G.: Nonlinear dynamics of surface-tension-driven instabilities. Wiley-vch (2001)

  • Dauby, P.C., Parmentier, P., Lebon, G., Grmela, M.: Coupled buoyancy and thermocapillary convection in a viscoelastic Maxwell fluid. J. Phys. Condens. Matter. 5(26), 4343 (1993)

    Google Scholar 

  • De Gans, B.J., Duineveld, P.C., Schubert, U.S.: Inkjet printing of polymers: state of the art and future developments. Adv. Mater. 16(3), 203–213 (2004)

    Google Scholar 

  • De Gennes, P.G.: Instabilities during the evaporation of a film: Non-glassy polymer+ volatile solvent. Eur Phys J E. 6(1), 421–424 (2001)

    Google Scholar 

  • Dondlinger, M., Colinet, P., Dauby, P.C.: Influence of a nonlinear reference temperature profile on oscillatory Bénard-Marangoni convection. Phys. Rev. E. 68(6), 066310 (2003)

    Google Scholar 

  • Doumenc, F., Boeck, T., Guerrier, B., Rossi, M.: Transient Rayleigh-Bénard-Marangoni convection due to evaporation: a linear non-normal stability analysis. J. Fluid Mech. 648, 521–539 (2010)

    MATH  Google Scholar 

  • Doumenc, F., Chénier, E., Trouette, B., Boeck, T., Delcarte, C., Guerrier, B., Rossi, M.: Free convection in drying binary mixtures: solutal versus thermal instabilities. Int. J. Heat Mass Transf. 63, 336–350 (2013)

    Google Scholar 

  • Evans, P.L., Schwartz, L.W., Roy, R.V.: J. Colloid Interface Sci. 227, 191 (2000)

    Google Scholar 

  • Foster, T.: Onset of convection in a layer of fluid cooled from above. Phys. Fluids. 8(10), 1770–1774 (1965a)

    Google Scholar 

  • Foster, T.: Stability of a homogeneous fluid cooled uniformly from above. Phys. Fluids. 8(7), 1249–1257 (1965b)

    MathSciNet  Google Scholar 

  • de Gans, B.J., Schubert, U.S.: Inkjet printing of well-defined polymer dots and arrays. Langmuir. 20(18), 7789–7793 (2004)

    Google Scholar 

  • Getachew, D., Rosenblat, S.: Thermocapillary instability of a viscoelastic liquid layer. Acta Mech. 55(1–2), 137–149 (1985)

    MATH  Google Scholar 

  • Goussis, D.A., Kelly, R.E.: On the thermocapillary instabilities in a liquid layer heated from below. Int. J. Heat Mass Transf. 33(10), 2237–2245 (1990)

    Google Scholar 

  • Guerrier, B., Bouchard, C., Allain, C., Bénard, C.: Drying kinetics of polymer films. AICHE J. 44(4), 791–798 (1998)

    Google Scholar 

  • Guo, L.: Gelation and micelle structure changes of aqueous polymer solutions, Ph.D. thesis, The Pennsylvania State University,, Pennsylvania, United states (2003)

  • Haut, B., Colinet, P.: Surface-tension-driven instabilities of a pure liquid layer evaporating into an inert gas. J. Colloid Interface Sci. 285(1), 296–305 (2005)

    Google Scholar 

  • Howison, S.D., Moriarty, J.A., Ockendon, J.R., Terrill, E.L., Wilson, S.K.: A mathematical model for drying paint layers. J. Eng. Math. 32(4), 377–394 (1997)

    MathSciNet  MATH  Google Scholar 

  • Iorio, C.S., Kabov, O.A., Legros, J.C.: Thermal patterns in evaporating liquid. Microgravity Sci Technol. 19(3–4), 27–29 (2007)

    Google Scholar 

  • Kang, K.H., Choi, C.K.: A theoretical analysis of the onset of surface-tension-driven convection in a horizontal liquid layer cooled suddenly from above. Phys. Fluids. 9(1), 7–15 (1997)

    Google Scholar 

  • Kawase, T., Shimoda, T., Newsome, C., Sirringhaus, H., Friend, R.H.: Inkjet printing of polymer thin film transistors. Thin Solid Films. 438, 279–287 (2003)

    Google Scholar 

  • Lebon, G., Parmentier, P., Teller, O., Dauby, P.C.: Bénard-Marangoni instability in a viscoelastic Jeffreys' fluid layer. Rheol. Acta. 33(4), 257–266 (1994)

    Google Scholar 

  • Litvinov, V.M. and De, P.P.: Spectroscopy of rubbers and rubbery materials. iSmithers Rapra Publishing (2002)

  • Machrafi, H., Rednikov, A., Colinet, P., Dauby, P.C.: Bénard instabilities in a binary-liquid layer evaporating into an inert gas. J. Colloid Interface Sci. 349(1), 331–353 (2010)

    Google Scholar 

  • Machrafi, H., Rednikov, A., Colinet, P., Dauby, P.C.: Bénard instabilities in a binary-liquid layer evaporating into an inert gas: Stability of quasi-stationary and time-dependent reference profiles. Eur Phys J Spec Top. 192(1), 71–81 (2011)

    Google Scholar 

  • Machrafi, H., Rednikov, A., Colinet, P., Dauby, P.C.: Time-dependent Marangoni-Bénard instability of an evaporating binary-liquid layer including gas transients. Phys. Fluids. 25(8), 084106 (2013)

    Google Scholar 

  • Machrafi, H., Rednikov, A., Colinet, P., Dauby, P.C.: Importance of wave-number dependence of Biot numbers in one-sided models of evaporative Marangoni instability: Horizontal layer and spherical droplet. Phys. Rev. E. 91(5), 053018 (2015)

    MathSciNet  Google Scholar 

  • Mokarian-Tabari, P., Geoghegan, M., Howse, J.R., Heriot, S.Y., Thompson, R.L., Jones, R.A.L.: Quantitative evaluation of evaporation rate during spin-coating of polymer blend films: Control of film structure through defined-atmosphere solvent-casting. Eur Phys J E. 33(4), 283–289 (2010)

    Google Scholar 

  • Münch, A., Please, C.P., Wagner, B.: Spin coating of an evaporating polymer solution. Phys. Fluids. 23(10), 102101 (2011)

    Google Scholar 

  • Nield, D.A.: Surface tension and buoyancy effects in cellular convection. J. Fluid Mech. 19(3), 341–352 (1964)

    MathSciNet  MATH  Google Scholar 

  • Ozawa, K.Y., Okuzono, T., Doi, M.: Diffusion process during drying to cause the skin formation in polymer solutions. Jpn. J. Appl. Phys. 45(11R), 8817 (2006)

    Google Scholar 

  • Pearson, J.R.A.: On convection cells induced by surface tension. J. Fluid Mech. 4(5), 489–500 (1958)

    MATH  Google Scholar 

  • Rabani, R., Machrafi, H., Dauby, P.: Effect of including a gas layer on the gel formation process during the drying of a polymer solution. Eur Phys J E. 40(10), 89 (2017)

    Google Scholar 

  • Reichenbach, J., Linde, H.: Linear perturbation analysis of surface-tension-driven convection at a plane interface (Marangoni instability). J. Colloid Interface Sci. 84(2), 433–443 (1981)

    Google Scholar 

  • Sakurai, S., Furukawa, C., Okutsu, A., Miyoshi, A., Nomura, S.: Control of mesh pattern of surface corrugation via rate of solvent evaporation in solution casting of polymer film in the presence of convection. Polymer. 43(11), 3359–3364 (2002)

    Google Scholar 

  • Simanovskii, I.B., Viviani, A., Dubois, F., Legros, J.C.: Symmetric and asymmetric convective oscillations in a multilayer system. Microgravity Sci Technol. 22(3), 257–263 (2010)

    Google Scholar 

  • Simanovskii, I.B., Viviani, A., Dubois, F., Legros, J.C.: The influence of the horizontal component of the temperature gradient on nonlinear oscillatory convective regimes in multilayer system. Microgravity Sci Technol. 23(1), 25 (2011)

    Google Scholar 

  • Tan, C.T., Homsy, G.M.: Stability of miscible displacements in porous media: Rectilinear flow. Phys Fluids. 29(11), 3549–3556 (1986)

    MATH  Google Scholar 

  • Tanner, R.I.: Engineering rheology (Vol. 52). OUP Oxford (2000)

  • Toussaint, G., Bodiguel, H., Doumenc, F., Guerrier, B., Allain, C.: Experimental characterization of buoyancy-and surface tension-driven convection during the drying of a polymer solution. Int. J. Heat Mass Transf. 51(17–18), 4228–4237 (2008)

    MATH  Google Scholar 

  • Trouette, B., Chénier, E., Doumenc, F., Delcarte, C., Guerrier, B.: Transient Rayleigh-Bénard-Marangoni solutal convection. Phys. Fluids. 24(7), 074108 (2012)

    Google Scholar 

  • Vidal, A., Acrivos, A.: Effect of nonlinear temperature profiles on onset of convection driven by surface tension gradients. Ind Eng Chem Fundam. 7(1), 53–58 (1968)

    Google Scholar 

  • Walheim, S., Schäffer, E., Mlynek, J., Steiner, U.: Nanophase-separated polymer films as high-performance antireflection coatings. Science. 283(5401), 520–522 (1999)

    Google Scholar 

  • Ye, H.Y., Yang, L.J., Fu, Q.F.: Spatial instability of viscous double-layer liquid sheets. Phys. Fluids. 28(10), 102101 (2016)

    Google Scholar 

Download references

Acknowledgements

Financial support from F.R.S.-FNRS (“DITRASOL” PDR T.0123.16) and from BELSPO (“EVAPORATION” MAP-PRODEX project) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramin Rabani.

Additional information

This article belongs to the Topical Collection: Thirty Years of Microgravity Research - A Topical Collection Dedicated to J. C. Legros

Guest Editor: Valentina Shevtsova

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabani, R., Machrafi, H. & Dauby, P. Influence of Composition Dependent Diffusion Coefficient, Viscosity and Relaxation Time on Evaporative Rayleigh-Bénard-Marangoni Instabilities Induced by Solvent Evaporation in a Polymer Solution. Microgravity Sci. Technol. 31, 615–628 (2019). https://doi.org/10.1007/s12217-019-09732-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-019-09732-8

Keywords

Navigation