Skip to main content

Advertisement

Log in

Gene Pathways Analysis of the Effects of Suspension Culture on Primary Human Renal Proximal Tubular Cells

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

Drug-induced acute kidney injury causes massive morbidity and mortality at exorbitant cost, yet there is currently no effective method for preclinical in vitro testing for nephrotoxicity. Proximal tubule cells are a key target for nephrotoxins, but heretofore, it has been a challenge to maintain their differentiation in vitro. One promising approach is to culture them in suspension, under physiological levels of shear, so as to induce and maintain structural and functional differentiation. Advances in materials, additive manufacturing, and injection molding have reduced the complexity and cost of suspension cultures hardware by orders of magnitude, making it a viable alternative for high throughput screening. This study defines the global transcriptome responses of human renal proximal tubular cells to suspension culture. GSEA/Cytoscape/ClueGO analysis showed near perfect concurrence with GPS-SIGORA analysis in the areas of mineral absorption and ribosome assembly, and defined the nucleic acid and protein mechanisms underlying the transcriptome response to suspension culture. Proximal tubular cells in suspension culture showed increased growth and viability assayed as reducing potential compared to cells cultured under static conditions. Suspension culture of human renal proximal tubular cells now allows investigations in basic cell biology, toxicology, drug screening, and tissue engineering, free of artificial matrices, feeder layers, fetal gene expression, or the need for complex engineering technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ABC:

ATP-binding cassette

FDR:

False Discovery Rate

FWER:

Family Wise Error Rate

GAPDH:

glyceraldehyde 3-phosphate dehydrogenase

GO:

Gene ontology

GPS:

Gene-Pair Signatures

GSEA:

Gene Set Enrichment Analysis

NES:

Normalized Enrichment Scores

OAT:

Organic anion transporter

OCT:

Organic cation transporter

RFU:

Relative fluorescence units

SIGORA:

Signature Over-Representation Analysis

SLC:

Solute carrier

References

  • Astashkina, A.I., Mann, B.K., Prestwich, G.D., Grainger, D.W.: A 3-D organoid kidney culture model engineered for high-throughput nephrotoxicity assays. Biomaterials. 33(18), 4700–4711 (2012). https://doi.org/10.1016/j.biomaterials.2012.02.063

    Article  Google Scholar 

  • Bach, P.H.: Detection of chemically induced renal injury: the cascade of degenerative morphological and functional changes that follow the primary nephrotoxic insult and evaluation of these changes by in-vitro methods. Toxicol. Lett. 46(1–3), 237–249 (1989)

    Article  Google Scholar 

  • Baer, P.C., Nockher, W.A., Haase, W., Scherberich, J.E.: Isolation of proximal and distal tubule cells from human kidney by immunomagnetic separation. Technical note. Kidney Int. 52(5), 1321–1331 (1997)

    Article  Google Scholar 

  • Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B. 57, 289–300 (1995)

    MathSciNet  MATH  Google Scholar 

  • Bindea, G., Mlecnik, B., Hackl, H., Charoentong, P., Tosolini, M., Kirilovsky, A., Fridman, W.H., Pages, F., Trajanoski, Z., Galon, J.: ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 25(8), 1091–1093 (2009). https://doi.org/10.1093/bioinformatics/btp101

    Article  Google Scholar 

  • Braam, B., Allen, P., Benes, E., Koomans, H.A., Navar, L.G., Hammond, T.: Human proximal tubular cell responses to angiotensin II analyzed using DNA microarray. Eur. J. Pharmacol. 464(2–3), 87–94 (2003)

    Article  Google Scholar 

  • Brinley, A.A., Theriot, C.A., Nelman-Gonzalez, M., Crucian, B., Stowe, R.P., Barrett, A.D., Pierson, D.L.: Characterization of Epstein-Barr virus reactivation in a modeled spaceflight system. J. Cell. Biochem. 114(3), 616–624 (2013). https://doi.org/10.1002/jcb.24403

    Article  Google Scholar 

  • Christensen, E.I., Verroust, P.J., Nielsen, R.: Receptor-mediated endocytosis in renal proximal tubule. Pflugers Arch. 458(6), 1039–1048 (2009). https://doi.org/10.1007/s00424-009-0685-8

    Article  Google Scholar 

  • Cialdai, F., Vignali, L., Morbidelli, L., Colciago, A., Celotti, F., Santi, A., Caselli, A., Cirri, P., Monici, M.: Modeled microgravity affects fibroblast functions related to wound healing. Microgravity Sci. Technol. 29(1–2), 121–132 (2017)

    Article  Google Scholar 

  • Cowger, N.L., Benes, E., Allen, P.L., Hammond, T.G.: Expression of renal cell protein markers is dependent on initial mechanical culture conditions. J. Appl. Physiol. 92(2), 691–700 (2002)

    Article  Google Scholar 

  • Crean, D., Bellwon, P., Aschauer, L., Limonciel, A., Moenks, K., Hewitt, P., Schmidt, T., Herrgen, K., Dekant, W., Lukas, A., Bois, F., Wilmes, A., Jennings, P., Leonard, M.O.: Development of an in vitro renal epithelial disease state model for xenobiotic toxicity testing. Toxicol. in Vitro. 30(1 Pt A), 128–137 (2015). https://doi.org/10.1016/j.tiv.2014.11.015

    Article  Google Scholar 

  • Dolbeare, F.A., Smith, R.E.: Flow cytometric measurement of peptidases with use of 5-nitrosalicylaldehyde and 4-methoxy-beta-naphthylamine derivatives. Clin. Chem. 23(8), 1485–1491 (1977)

    Google Scholar 

  • Du, Z., Duan, Y., Yan, Q., Weinstein, A.M., Weinbaum, S., Wang, T.: Mechanosensory function of microvilli of the kidney proximal tubule. Proc. Natl. Acad. Sci. U. S. A. 101(35), 13068–13073 (2004). https://doi.org/10.1073/pnas.0405179101

    Article  Google Scholar 

  • Duan, Y., Gotoh, N., Yan, Q., Du, Z., Weinstein, A.M., Wang, T., Weinbaum, S.: Shear-induced reorganization of renal proximal tubule cell actin cytoskeleton and apical junctional complexes. Proc. Natl. Acad. Sci. U. S. A. 105(32), 11418–11423 (2008). https://doi.org/10.1073/pnas.0804954105

    Article  Google Scholar 

  • Essig, M., Friedlander, G.: Tubular shear stress and phenotype of renal proximal tubular cells. J. Am. Soc. Nephrol. 14(Suppl 1), S33–S35 (2003)

    Article  Google Scholar 

  • Foroushani, A.B., Brinkman, F.S., Lynn, D.J.: Pathway-GPS and SIGORA: identifying relevant pathways based on the over-representation of their gene-pair signatures. PeerJ. 1, e229 (2013). https://doi.org/10.7717/peerj.229

    Article  Google Scholar 

  • Gautier, L., Cope, L., Bolstad, B.M., Irizarry, R.A.: affy--analysis of Affymetrix GeneChip data at the probe level. Bioinformatics. 20(3), 307–315 (2004). https://doi.org/10.1093/bioinformatics/btg405

    Article  Google Scholar 

  • Gentleman, R.C., Carey, V.J., Bates, D.M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B., Gautier, L., Ge, Y., Gentry, J., Hornik, K., Hothorn, T., Huber, W., Iacus, S., Irizarry, R., Leisch, F., Li, C., Maechler, M., Rossini, A.J., Sawitzki, G., Smith, C., Smyth, G., Tierney, L., Yang, J.Y., Zhang, J.: Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5(10), R80 (2004). https://doi.org/10.1186/gb-2004-5-10-r80

    Article  Google Scholar 

  • Guo, P., Weinstein, A.M., Weinbaum, S.: A hydrodynamic mechanosensory hypothesis for brush border microvilli. Am. J. Physiol. Renal Physiol. 279(4), F698–F712 (2000)

    Article  Google Scholar 

  • Hammond, T.G.: Analysis and isolation of renal tubular cells by flow cytometry. Kidney Int. 42(4), 997–1005 (1992)

    Article  Google Scholar 

  • Hammond, T.G., Allen, P.L.: The Bonn criteria: minimal experimental parameter reporting for clinostat and random positioning machine experiments. Microgravity Sci. Technol. 23(2), 271–275 (2011)

    Article  Google Scholar 

  • Hammond, T.G., Birdsall, H.H.: Hepatocyte CYP2B6 can be expressed in cell culture systems by exerting physiological levels of shear: implications for ADME testing. A review. J Toxicol. 2017, 1–5 (2017a). https://doi.org/10.1155/2017/1907952

    Article  Google Scholar 

  • Hammond, T.G., Birdsall, H.H.: Suspension culture device fabricated from breathable materials and methods of making and using same (DUS5312PROV). USA Patent. (2017b)

  • Hammond, T.G., Hammond, J.S.: Optimized suspension culture: the rotating-wall vessel. Am. J. Physiol. Renal Physiol. 281(1), F12–F25 (2001)

    Article  Google Scholar 

  • Hammond, T.G., Benes, E., O'Reilly, K.C., Wolf, D.A., Linnehan, R.M., Taher, A., Kaysen, J.H., Allen, P.L., Goodwin, T.J.: Mechanical culture conditions effect gene expression: gravity-induced changes on the space shuttle. Physiol. Genomics. 3(3), 163–173 (2000)

    Article  Google Scholar 

  • Hammond, T., Allen, P., Birdsall, H.: Is there a space-based technology solution to problems with preclinical drug toxicity testing? Pharm. Res. 33(7), 1545–1551 (2016). https://doi.org/10.1007/s11095-016-1942-0

    Article  Google Scholar 

  • Homan, K.A., Kolesky, D.B., Skylar-Scott, M.A., Herrmann, J., Obuobi, H., Moisan, A., Lewis, J.A.: Bioprinting of 3D convoluted renal proximal tubules on perfusable chips. Sci. Rep. 6, 34845 (2016). https://doi.org/10.1038/srep34845

    Article  Google Scholar 

  • Institute of Medicine: Accelerating the development of biomarkers for drug safety: Workshop summary. Institute of Medicine (US) Forum on Drug Discovery, Development, and Translation. National Academies Press (US), Washington (2009)

  • Kaysen, J.H., Campbell, W.C., Majewski, R.R., Goda, F.O., Navar, G.L., Lewis, F.C., Goodwin, T.J., Hammond, T.G.: Select de novo gene and protein expression during renal epithelial cell culture in rotating wall vessels is shear stress dependent. J. Membr. Biol. 168(1), 77–89 (1999)

    Article  Google Scholar 

  • Kim, S.M., Kim, H., Yang, D., Park, J., Park, R., Namkoong, S., Lee, J.I., Choi, I., Kim, H.S., Kim, H., Park, J.: An experimental and theoretical approach to optimize a three-dimensional clinostat for life science experiments. Microgravity Sci. Technol. 29(1–2), 97–106 (2017). https://doi.org/10.1007/s12217-016-9529-2

    Article  Google Scholar 

  • King, S.M., Higgins, J.W., Nino, C.R., Smith, T.R., Paffenroth, E.H., Fairbairn, C.E., Docuyanan, A., Shah, V.D., Chen, A.E., Presnell, S.C., Nguyen, D.G.: 3D proximal tubule tissues recapitulate key aspects of renal physiology to enable nephrotoxicity testing. Front. Physiol. 8, 123 (2017). https://doi.org/10.3389/fphys.2017.00123

    Article  Google Scholar 

  • Long, J.P., Hughes, J.H.: Epstein-Barr virus latently infected cells are selectively deleted in simulated-microgravity cultures. In Vitro Cell. Dev. Biol. Anim. 37(4), 223–230 (2001). https://doi.org/10.1007/BF02577533

    Article  Google Scholar 

  • Maggiorani, D., Dissard, R., Belloy, M., Saulnier-Blache, J.S., Casemayou, A., Ducasse, L., Gres, S., Belliere, J., Caubet, C., Bascands, J.L., Schanstra, J.P., Buffin-Meyer, B.: Shear stress-induced alteration of epithelial Organization in Human Renal Tubular Cells. PLoS One. 10(7), e0131416 (2015). https://doi.org/10.1371/journal.pone.0131416

    Article  Google Scholar 

  • Moestrup, S.K., Kozyraki, R., Kristiansen, M., Kaysen, J.H., Rasmussen, H.H., Brault, D., Pontillon, F., Goda, F.O., Christensen, E.I., Hammond, T.G., Verroust, P.J.: The intrinsic factor-vitamin B12 receptor and target of teratogenic antibodies is a megalin-binding peripheral membrane protein with homology to developmental proteins. J. Biol. Chem. 273(9), 5235–5242 (1998)

    Article  Google Scholar 

  • Nielsen, R., Christensen, E.I., Birn, H.: Megalin and cubilin in proximal tubule protein reabsorption: from experimental models to human disease. Kidney Int. 89(1), 58–67 (2016). https://doi.org/10.1016/j.kint.2015.11.007

    Article  Google Scholar 

  • Nigam, S.K., Wu, W., Bush, K.T., Hoenig, M.P., Blantz, R.C., Bhatnagar, V.: Handling of drugs, metabolites, and uremic toxins by kidney proximal tubule drug transporters. Clin. J. Am. Soc. Nephrol. 10(11), 2039–2049 (2015). https://doi.org/10.2215/CJN.02440314

    Article  Google Scholar 

  • Nislow, C., Lee, A.Y., Allen, P.L., Giaever, G., Smith, A., Gebbia, M., Stodieck, L.S., Hammond, J.S., Birdsall, H.H., Hammond, T.G.: Genes required for survival in microgravity revealed by genome-wide yeast deletion collections cultured during spaceflight. Biomed. Res. Int. 2015, 976458 (2015). https://doi.org/10.1155/2015/976458

    Article  Google Scholar 

  • Oo, Z.Y., Kandasamy, K., Tasnim, F., Zink, D.: A novel design of bioartificial kidneys with improved cell performance and haemocompatibility. J. Cell. Mol. Med. 17(4), 497–507 (2013). https://doi.org/10.1111/jcmm.12029

    Article  Google Scholar 

  • Park, J., Shrestha, R., Qiu, C., Kondo, A., Huang, S., Werth, M., Li, M., Barasch, J., Susztak, K.: Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease. Science. 360(6390), 758–763 (2018). https://doi.org/10.1126/science.aar2131

    Article  Google Scholar 

  • Pfaller, W., Gstraunthaler, G.: Nephrotoxicity testing in vitro--what we know and what we need to know. Environ. Health Perspect. 106(Suppl 2), 559–569 (1998)

    Article  Google Scholar 

  • Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., Smyth, G.K.: Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43(7), e47 (2015). https://doi.org/10.1093/nar/gkv007

    Article  Google Scholar 

  • Schophuizen, C.M., De Napoli, I.E., Jansen, J., Teixeira, S., Wilmer, M.J., Hoenderop, J.G., Van den Heuvel, L.P., Masereeuw, R., Stamatialis, D.: Development of a living membrane comprising a functional human renal proximal tubule cell monolayer on polyethersulfone polymeric membrane. Acta Biomater. 14, 22–32 (2015). https://doi.org/10.1016/j.actbio.2014.12.002

    Article  Google Scholar 

  • Seitz, C., Frensing, T., Hoper, D., Kochs, G., Reichl, U.: High yields of influenza a virus in Madin-Darby canine kidney cells are promoted by an insufficient interferon-induced antiviral state. J. Gen. Virol. 91(Pt 7), 1754–1763 (2010). https://doi.org/10.1099/vir.0.020370-0

    Article  Google Scholar 

  • Shaffer, J.P.: Multiple hypothesis testing. Annu. Rev. Psychol. 46, 561–584 (1995). https://doi.org/10.1146/annurev.ps.46.020195.003021

    Article  Google Scholar 

  • Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., Ideker, T.: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13(11), 2498–2504 (2003). https://doi.org/10.1101/gr.1239303

    Article  Google Scholar 

  • Soldatow, V.Y., Lecluyse, E.L., Griffith, L.G., Rusyn, I.: Models for liver toxicity testing. Toxicol. Res. (Camb). 2(1), 23–39 (2013). https://doi.org/10.1039/C2TX20051A

    Article  Google Scholar 

  • Sonnaert M., Papantoniou I., Luyten F.P., Schrooten J.I.: Quantitative validation of the Presto Blue metabolic assay for online monitoring of cell proliferation in a 3D perfusion bioreactor system. Tissue Eng Part C Methods. 21(6), 519–529. (2015). https://doi.org/10.1089/ten.TEC.2014.0255

  • Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., Mesirov, J.P.: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 102(43), 15545–15550 (2005). https://doi.org/10.1073/pnas.0506580102

    Article  Google Scholar 

  • Verroust, P.J., Christensen, E.I., Hammond, T.G.: Vesicular flow in epithelial cells: physiopathologic importance of two multiligand receptors. Bull Acad Natl Med. 180(6), 1187–1197; discussion 1197–8 (1996)

  • Warnke, E., Kopp, S., Wehland, M., Hemmersbach, R., Bauer, J., Pietsch, J., Infanger, M., Grimm, D.: Thyroid cells exposed to simulated microgravity conditions – comparison of the fast rotating clinostat and the random positioning machine. Microgravity Sci. Technol. 28(3), 247–260 (2016). https://doi.org/10.1007/s12217-015-9456-7

    Article  Google Scholar 

  • Wieser, M., Stadler, G., Jennings, P., Streubel, B., Pfaller, W., Ambros, P., Riedl, C., Katinger, H., Grillari, J., Grillari-Voglauer, R.: hTERT alone immortalizes epithelial cells of renal proximal tubules without changing their functional characteristics. Am. J. Physiol. Renal Physiol. 295(5), F1365–F1375 (2008). https://doi.org/10.1152/ajprenal.90405.2008

    Article  Google Scholar 

  • Wilmer, M.J., Ng, C.P., Lanz, H.L., Vulto, P., Suter-Dick, L., Masereeuw, R.: Kidney-on-a-Chip Technology for drug-induced nephrotoxicity screening. Trends Biotechnol. 34(2), 156–170 (2016). https://doi.org/10.1016/j.tibtech.2015.11.001

    Article  Google Scholar 

Download references

Acknowledgements

NASA Grants NNX13AN32G, NNX12AM93G, and NNX10AP01G supported these studies. This material is the result of work supported with resources and the use of facilities at the Durham Veterans Affairs Medical Center and the Veterans Health Administration Office of Research and Development in the Department of Veterans Affairs. Contents do not represent the views of the Department of Veterans Affairs or the United States of America. We thank the Medical College of Georgia for performing gene arrays. We thank David Corcoran Ph.D. and the Duke Genomic Analysis and Bioinformatics Shared Resource for performing Gene Array analysis. We thank Erica Acton and Corey Nislow of the University of British Columbia for performing analysis both by Cytoscape using ClueGO and SIGORA. The authors declare that there is no conflict of interest regarding the publication of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy G. Hammond.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hammond, T.G., Allen, P.L. & Birdsall, H.H. Gene Pathways Analysis of the Effects of Suspension Culture on Primary Human Renal Proximal Tubular Cells. Microgravity Sci. Technol. 30, 951–963 (2018). https://doi.org/10.1007/s12217-018-9658-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-018-9658-x

Keywords

Navigation