Microgravity Science and Technology

, Volume 30, Issue 4, pp 525–534 | Cite as

Bubble Dynamics in Turbulent Duct Flows: Lattice-Boltzmann Simulations and Drop Tower Experiments

  • Pau Bitlloch
  • Xavier Ruiz
  • Laureano Ramírez-Piscina
  • Jaume CasademuntEmail author
Original Article


Lattice-Boltzmann simulations of a turbulent duct flow have been carried out to obtain trajectories of passive tracers in the conditions of a series of microgravity experiments of turbulent bubble suspensions. The statistics of these passive tracers are compared to the corresponding measurements for single-bubble and bubble-pair statistics obtained from particle tracking techniques after the high-speed camera recordings from drop-towers experiments. In the conditions of the present experiments, comparisons indicate that experimental results on bubble velocity fluctuations are not consistent with simulations of passive tracers, which points in the direction of an active role of bubbles. The present analysis illustrates the utility of a recently introduced experimental setup to generate controlled turbulent bubble suspensions in microgravity.


Turbulent flow Bubble dispersion Bubble interactions Microgravity Drop tower Lattice-Boltzmann simulations 



We acknowledge the support from ESA for the funding of the drop tower experiments that provided the raw data analyzed and the ZARM crew, in particular to Dieter Bischoff, for their valuable support all along the experiments and their hospitality. We acknowledge financial support from Ministerio de Economía y Competividad (Spain) under projects FIS2013-41144-P, FIS2016-78507-C2-2-P (J.C.), FIS2015-66503-C3-2-P (L.R.-P., also financed by FEDER, European Union), ESP2014-53603-P (X.R.), and Generalitat de Catalunya under projects 2014-SGR-878 (J.C.), 2014-SGR-365 (X.R.). P.B. acknowledges Ministerio de Ciencia y Tecnología (Spain) for a pre-doctoral fellowship. We also acknowledge the computing resources, technical expertise and assistance provided by the Barcelona Supercomputing Center, which were financed by RES (Red Española de Supercomputación, Spain) under projects FI-2010-2-0015, FI-2009-3-0007.


  1. Arias, S., Ruiz, X., Casademunt, J., Ramírez-Piscina, L., González-Cinca, R.: Experimental study of a microchannel bubble injector for microgravity applications. Microgravity. Sci. Technol. 21(1–2), 107–111 (2009)CrossRefGoogle Scholar
  2. Balachandar, S., Eaton, J.: Turbulent dispersed multiphase flow. Annu. Rev. Fluid. Mech. 42, 111–133 (2010)CrossRefzbMATHGoogle Scholar
  3. Bitlloch P.: Turbulent bubble suspensions and crystal growth in microgravity. Drop tower experiments and numerical simulations. PhD Thesis (2012)Google Scholar
  4. Bitlloch, P., Ruiz, X., Ramírez-Piscina, L., Casademunt, J.: Turbulent bubble jets in microgravity. Spatial dispersion and velocity fluctuations. Microgravity. Sci. Technol. 27(3), 207–220 (2015)CrossRefGoogle Scholar
  5. Bitlloch, P., Ruiz, X., Ramírez-Piscina, L., Casademunt, J.: Generation and control of monodisperse bubble suspensions in microgravity. Aerosp. Sci. Technol. 77, 344–352 (2018)CrossRefGoogle Scholar
  6. Carrera, J., Ruiz, X., Ramírez-Piscina, L., Casademunt, J., Dreyer, M.: Generation of a monodisperse microbubble jet in microgravity. AIAA J. 46(8), 2010–2019 (2008)CrossRefGoogle Scholar
  7. Colin, C.: Two-phase bubbly flows in microgravity: some open questions. Microgravity. Sci. Technol. 13(2), 16 (2002)MathSciNetCrossRefGoogle Scholar
  8. Colin, C., Legendre, D., Fabre, J.: Bubble distribution in a turbulent pipe flow. In: First International Symposium on Microgravity Research and Applications in Physical Sciences and Biotechnology ESA SP-454 (2001)Google Scholar
  9. Colin, C., Riou, X., Fabre, J.: Bubble coalescence in gas–liquid flow at microgravity conditions. Microgravity. Sci. Technol. 20(3–4), 243–246 (2008)CrossRefGoogle Scholar
  10. Hill, S., Kostyk, C., Motil, B., Notardonato, W., Rickman, S., Swanson, T.: Thermal Management Systems Roadmap. National Aeronautics and Space Administration (2010)Google Scholar
  11. Hou, S., Sterling, J., Chen, S., Doolen, G.D.: A lattice Boltzmann subgrid model for high reynolds number flows. Fields. Inst. Commun. 6, 1–18 (1994)zbMATHGoogle Scholar
  12. Hurlbert, K., Bagdigian, B., Carroll, C., Jeevarajan, A., Kliss, M., Singh, B.: Human Health, Life Support and Habitation Systems Roadmap. National Aeronautics and Space Administration (2010)Google Scholar
  13. Kytömaa, H.K.: Stability of the structure in multicomponent flows. Ph.D. Thesis. California Institute of Technology (1987)Google Scholar
  14. Mazzitelli, I.M., Lohse, D., Toschi, F.: The effect of microbubbles on developed turbulence. Phys. Fluids. 15(1), L5–L8 (2003)CrossRefzbMATHGoogle Scholar
  15. Melling, A, Whitelaw, J: Turbulent flow in a rectangular duct. J. Fluid. Mech. 78(2), 289–315 (1976)CrossRefGoogle Scholar
  16. Meyer, M., Johnson, L., Palaszewsky, B., Goebel, D., White, H., Coote, D.: In-space Propulsion Systems Roadmap. National Aeronautics and Space Administration (2010)Google Scholar
  17. Nourgaliev, R., Dinh, T., Theofanous, T., Joseph, D.: The lattice Boltzmann equation method: theoretical interpretation, numerics and implications. Int. J. Multiphase. Flow. 29(1), 117–169 (2003)CrossRefzbMATHGoogle Scholar
  18. Pattison, M.J., Premnath, K.N., Banerjee, S.: Computation of turbulent flow and secondary motions in a square duct using a forced generalized lattice Boltzmann equation. Phys. Rev. E 79, 026704 (2009)CrossRefGoogle Scholar
  19. Salazar, J.P., Collins, L.R.: Two-particle dispersion in isotropic turbulent flows. Annu. Rev. Fluid Mech. 41, 405–432 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  20. Tryggvason, G., Lu, J., Biswas, S., Esmaeeli, A.: Studies of bubbly channel flows by direct numerical simulations. In: Conference on Turbulence and Interactions TI2006 (2006)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Departament de Física de la Matèria CondensadaUniversitat de BarcelonaBarcelonaSpain
  2. 2.Departament de Química, Física i InorgànicaUniversitat Rovira i VirgiliTarragonaSpain
  3. 3.Departament de FísicaUniversitat Politècnica de CatalunyaBarcelonaSpain
  4. 4.Institut d’Estudis Espacials de CatalunyaBarcelonaSpain

Personalised recommendations