Skip to main content
Log in

Transcriptomic Analysis Reveals the Effects of Microgravity on Rice Calli on Board the Chinese Spaceship Shenzhou 8

Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

Rice calli were loaded onto the stationary and rotating platforms of a biological incubator (SIMBOX) during spaceflight and ground control experiments. The calli in the SIMBOX were fixed with RNAlater in space after a 324-h spacecraft flight, as well as on the ground at the same time point in a ground control experiment. Microgravity-responsive (MR) transcripts were identified by a comparison of the spaceflight controls (F-μg) with the 1-g ground controls (G-1g) and 1-g inflight controls (F-1g). MapMan analysis was used to classify 955 MR transcripts. These transcripts mainly belonged to the following categories: cell wall modification and metabolism, glycolysis and the tricarboxylic acid (TCA) cycle, transcription factors, protein modification and degradation, hormone metabolism and signalling, calcium regulation, receptor-like kinase activity, and transporters. Here, we focused on the effects of microgravity on the plant cell wall and discussed the relationship between the variation in the cell wall and plant cell growth under microgravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Abbreviations

MR:

Microgravity responsive

SIMBOX:

Science in Microgravity Box

2,4-D:

2,4-dichlorophenoxyacetic acid

F-μ g :

Spaceflight controls

F-1g :

1-g inflight controls

G-1g :

1-g ground controls

References

  • Cai, W.M., Jin, J., Chen, H.Y.: Effects of gravity on growth of plant cells. Chin. J. Space Sci. 36(4), 552–556 (2016)

    Google Scholar 

  • Cannon, A.E., Salmi, M.L., Clark, G.B., Roux, S.: New insights in plant biology gained from research in space. Gravitational and Space Research 3(2), 3–10 (2015)

    Google Scholar 

  • Correll, M., Alexander, S., Rhea, P., Z, K.J.: the effects of microgravity on gene expression of Arabidopsis. 37th COSPAR Scientific Assembly (2008)

  • Correll, M.J., Pyle, T.P., Millar, K.D., Sun, Y., Yao, J., Edelmann, R.E., Kiss, J.Z.: Transcriptome analyses of Arabidopsis thaliana seedlings grown in space: implications for gravity-responsive genes. Planta 238(3), 519–533 (2013). https://doi.org/10.1007/s00425-013-1909-x

    Article  Google Scholar 

  • Cui, D.Y., Neill, S.J., Tang, Z.C., Cai, W.M.: Gibberellin-regulated XET is differentially induced by auxin in rice leaf sheath bases during gravitropic bending. J. Exp. Bot. 56(415), 1327–1334 (2005). https://doi.org/10.1093/jxb/eri133

    Article  Google Scholar 

  • Fengler, S., Spirer, I., Neef, M., Ecke, M., Hauslage, J., Hampp, R.: Changes in gene expression of arabidopsis thaliana cell cultures upon exposure to real and simulated partial-g forces. Microgravity Sci. Technol. 28, 319–329 (2016). https://doi.org/10.1007/s12217-015-9452-y

    Article  Google Scholar 

  • Fengler, S., Spirer, I., Neef, M., Ecke, M., Nieselt, K., Hampp, R.: A whole-genome microarray study of Arabidopsis thaliana semisolid callus cultures exposed to microgravity and nonmicrogravity related spaceflight conditions for 5 days on board of Shenzhou 8. Biomed. Res. Int. 2015, 547495 (2015). https://doi.org/10.1155/2015/547495

    Article  Google Scholar 

  • Grant, G.T., Morris, E.R., Rees, D.A., Smith, P.J.C., Thom, D.: Biological interactions between polysaccharides and divalent cations: The egg-box model. Febs Letters 32(1), 195–198 (1973)

    Article  Google Scholar 

  • Hoson, T., Soga, K., Mori, R., Saiki, M., Nakamura, Y., Wakabayashi, K., Kamisaka, S.: Stimulation of elongation growth and cell wall loosening in rice coleoptiles under microgravity conditions in space. Plant Cell Physiol. 43(9), 1067–1071 (2002a)

  • Hoson, T., Soga, K., Mori, R., Saiki, M., Nakamura, Y., Wakabayashi, K., Kamisaka, S.: Cell wall changes involved in the automorphic curvature of rice coleoptiles under microgravity conditions in space. J. Plant Res. 117(6), 449–455 (2004). https://doi.org/10.1007/s10265-004-0182-2

    Article  Google Scholar 

  • Hoson, T., Soga, K., Wakabayashi, K., Hashimoto, T., Karahara, I., Yano, S., Tanigaki, F., Shimazu, T., Kasahara, H., Masuda, D., Kamisaka, S.: Growth stimulation in inflorescences of an Arabidopsis tubulin mutant under microgravity conditions in space. Plant Biol. (Stuttg.) 16 Suppl 1, 91–96 (2014). https://doi.org/10.1111/plb.12099

    Article  Google Scholar 

  • Hoson, T., Soga, K., Wakabayashi, K., Kamisaka, S., Tanimoto, E.: Growth and cell wall changes in rice roots under microgravity conditions in space. Uchu Seibutsu Kagaku 16(3), 171–172 (2002b)

    Google Scholar 

  • Hu, L.W., Cui, D.Y., Neill, S., Cai, W.M.: OsEXPA4 and osRWC3 are involved in asymmetric growth during gravitropic bending of rice leaf sheath bases. Physiol. Plant. 130(4), 560–571 (2007). https://doi.org/10.1111/j.1399-3054.2007.00912.x

    Article  Google Scholar 

  • Hu, L.W., Mei, Z.L., Zang, A.P., Chen, H.Y., Dou, X.Y., Jin, J., Cai, W.M.: Microarray analyses and comparisons of upper or lower flanks of rice shoot base preceding gravitropic bending. PloS One 8(9), e74646 (2013). https://doi.org/10.1371/journal.pone.0074646

    Article  Google Scholar 

  • Jin, J., Chen, H., Cai, W.: Transcriptome analysis of oryza sativa calli under microgravity. Microgravity Sci. Technol. 27(6), 437–453 (2015). https://doi.org/10.1007/s12217-015-9432-2

    Article  Google Scholar 

  • Johnson, C.M., Subramanian, A., Pattathil, S., Correll, M.J., Kiss, J.Z.: Comparative transcriptomics indicate changes in cell wall organization and stress response in seedlings during spaceflight. Am J Bot. https://doi.org/10.3732/ajb.1700079 (2017)

  • Karthikeyan, A., Pandian, S.T., Ramesh, M.: High frequency plant regeneration from embryogenic callus of a popular indica rice (Oryza sativa L.) Physiol. Mol. Biol. Plants 15(4), 371–375 (2009). https://doi.org/10.1007/s12298-009-0042-6

    Article  Google Scholar 

  • Klymchuk, D.O., Kordyum, E.L., Vorobyova, T.V., Chapman, D.K., Brown, C.S.: Changes in vacuolation in the root apex cells of soybean seedlings in microgravity. Adv. Space Res. 31(10), 2283–2288 (2003)

    Article  Google Scholar 

  • Kwon, T., Sparks, J.A., Nakashima, J., Allen, S.N., Tang, Y., Blancaflor, E.B.: Transcriptional response of Arabidopsis seedlings during spaceflight reveals peroxidase and cell wall remodeling genes associated with root hair development. Am. J. Bot. 102(1), 21–35 (2015). https://doi.org/10.3732/ajb.1400458

    Article  Google Scholar 

  • Li, H.S., Lu, J.Y., Zhao, H., Sun, Q., Yu, F.T., Pan, Y., Chen, Y., Su, L., Liu, M.: The impact of space environment on gene expression in Arabidopsis thaliana seedlings. SCIENCE CHINA Technol. Sci. 60(6), 1–9 (2017). https://doi.org/10.1007/s11431-016-0232-7

    Article  Google Scholar 

  • Libertini, E., Li, Y., McQueen-Mason, S.J.: Phylogenetic analysis of the plant endo-beta-1,4-glucanase gene family. J. Mol. Evol. 58(5), 506–515 (2004). https://doi.org/10.1007/s00239-003-2571-x

    Article  Google Scholar 

  • Martzivanou, M., Babbick, M., Cogoli-Greuter, M., Hampp, R.: Microgravity-related changes in gene expression after short-term exposure of Arabidopsis thaliana cell cultures. Protoplasma 229(2-4), 155–162 (2006). https://doi.org/10.1007/s00709-006-0203-1

    Article  Google Scholar 

  • Martzivanou, M., Hampp, R.: Hyper-gravity effects on the Arabidopsis transcriptome. Physiol. Plant. 118 (2), 221–231 (2003)

    Article  Google Scholar 

  • Munoz-Bertomeu, J., Miedes, E., Lorences, E.P.: Expression of xyloglucan endotransglucosylase/hydrolase (XTH) genes and XET activity in ethylene treated apple and tomato fruits. J. Plant Physiol. 170(13), 1194–1201 (2013). https://doi.org/10.1016/j.jplph.2013.03.015

    Article  Google Scholar 

  • Neef, M., Denn, T., Ecke, M., Hampp, R.: Intracellular calcium decreases upon hyper Gravity-Treatment of arabidopsis thaliana cell cultures. Microgravity Sci. Technol. 28, 331–336 (2016). https://doi.org/10.1007/s12217-015-9457-6

    Article  Google Scholar 

  • Page, R.D.: Treeview: an application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12(4), 357–358 (1996)

    Google Scholar 

  • Paul, A.L., Levine, H.G., McLamb, W., Norwood, K.L., Reed, D., Stutte, G.W., Wells, H.W., Ferl, R.J.: Plant molecular biology in the space station era: utilization of KSC fixation tubes with RNAlater. Acta Astronaut. 56(6), 623–628 (2005)

    Article  Google Scholar 

  • Paul, A.L., Zupanska, A.K., Ostrow, D.T., Zhang, Y., Sun, Y., Li, J.L., Shanker, S., Farmerie, W.G., Amalfitano, C.E., Ferl, R.J.: Spaceflight transcriptomes: unique responses to a novel environment. Astrobiology 12(1), 40–56 (2012). https://doi.org/10.1089/ast.2011.0696

    Article  Google Scholar 

  • Paul, A.L., Zupanska, A.K., Schultz, E.R., Ferl, R.J.: Organ-specific remodeling of the Arabidopsis transcriptome in response to spaceflight. BMC Plant Biol. 13, 112–121 (2013). https://doi.org/10.1186/1471-2229-13-112

    Article  Google Scholar 

  • Peaucelle, A., Braybrook, S., Hofte, H.: Cell wall mechanics and growth control in plants: the role of pectins revisited. Front. Plant Sci. 3, 121–126 (2012). https://doi.org/10.3389/fpls.2012.00121

    Article  Google Scholar 

  • Peaucelle, A., Louvet, R., Johansen, J.N., Hofte, H., Laufs, P., Pelloux, J., Mouille, G.: Arabidopsis phyllotaxis is controlled by the methyl-esterification status of cell-wall pectins. Curr. Biol. 18(24), 1943–1948 (2008). https://doi.org/10.1016/j.cub.2008.10.065

    Article  Google Scholar 

  • Pelloux, J., Rusterucci, C., Mellerowicz, E.J.: New insights into pectin methylesterase structure and function. Trends Plant Sci. 12(6), 267–277 (2007). https://doi.org/10.1016/j.tplants.2007.04.001

    Article  Google Scholar 

  • Pischke, M.S., Huttlin, E.L., Hegeman, A.D., Sussman, M.R.: A transcriptome-based characterization of habituation in plant tissue culture. Plant Physiol. 140(4), 1255–1278 (2006). https://doi.org/10.1104/pp.105.076059

    Article  Google Scholar 

  • Ruyters, G., Spiero, F., Legue, V., Palme, K.: Plant biology in space. Plant Biol. (Stuttg.) 16 Suppl 1, 1–3 (2014). https://doi.org/10.1111/plb.12129

    Article  Google Scholar 

  • Salmi, M.L., Roux, S.J.: Gene expression changes induced by space flight in single-cells of the fern Ceratopteris richardii. Planta 229(1), 151–159 (2008). https://doi.org/10.1007/s00425-008-0817-y

    Article  Google Scholar 

  • Strohm, A.K., Baldwin, K.L., Masson, P.H.: Molecular mechanisms of root gravity sensing and signal transduction. Wiley Interdiscip. Rev. Dev. Biol. 1(2), 276–285 (2012). https://doi.org/10.1002/wdev.14

    Article  Google Scholar 

  • Stutte, G.W., Monje, O., Hatfield, R.D., Paul, A.L., Ferl, R.J., Simone, C.G.: Microgravity effects on leaf morphology, cell structure, carbon metabolism and mRNA expression of dwarf wheat. Planta 224(5), 1038–1049 (2006). https://doi.org/10.1007/s00425-006-0290-4

    Article  Google Scholar 

  • Thimm, O., Blasing, O., Gibon, Y., Nagel, A., Meyer, S., Kruger, P., Selbig, J., Muller, L.A., Rhee, S.Y., Stitt, M.: MAPMAN: A user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 37(6), 914–939 (2004)

    Article  Google Scholar 

  • Tibbitts, T.W., Bula, R.J., Tibbits, T.W.: Growing plant in space. Chron Horticult 29(4), 53–55 (1989)

    Google Scholar 

  • Uozu, S., Tanaka-Ueguchi, M., Kitano, H., Hattori, K., Matsuoka, M.: Characterization of XET-related genes of rice. Plant Physiol. 122(3), 853–859 (2000)

    Article  Google Scholar 

  • Usadel, B., Nagel, A., Thimm, O., Redestig, H., Blaesing, O.E., Palacios-Rojas, N., Selbig, J., Hannemann, J., Piques, M.C., Steinhauser, D., Scheible, W.R., Gibon, Y., Morcuende, R., Weicht, D., Meyer, S., Stitt, M.: Extension of the visualization tool MapMan to allow statistical analysis of arrays, display of corresponding genes, and comparison with known responses. Plant Physiol. 138(3), 1195–1204 (2005). https://doi.org/10.1104/pp.105.060459

    Article  Google Scholar 

  • Woodward, F.I.: Plant research in space and time. New Phytol. 176 (1), 1–3 (2007). https://doi.org/10.1111/j.1469-8137.2007.02205.x

    Article  Google Scholar 

  • Zupanska, A.K., Denison, F.C., Ferl, R.J., Paul, A.L.: Spaceflight engages heat shock protein and other molecular chaperone genes in tissue culture cells of Arabidopsis thaliana. Am. J. Bot. 100(1), 235–248 (2013). https://doi.org/10.3732/ajb.1200343

    Article  Google Scholar 

Download references

Acknowledgements

The Technology and Engineering Center for Space Utilization (Chinese Academy of Sciences) is acknowledged for project coordination. The spaceflight equipment was developed by the Shanghai Institute of Technical Physics (Chinese Academy of Sciences) Microarray analysis was conducted by Shanghai Biochip Co., Ltd., and Xue Li (Institute of Plant Physiology and Ecology, SIBS, CAS) helped with the data analysis.

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. U1738107, 31570859, 31500236 and 31600684), Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA04020202-15, XDA04020415), and the China Manned Space Flight Technology Project.

Author information

Authors and Affiliations

Authors

Contributions

Conception, design, experimentation, dataanalysis and manuscript writing: Jing Jin Experimentation: Haiying Chen. Conception, design and final approval of manuscript: Weiming Cai.

Corresponding author

Correspondence to Weiming Cai.

Ethics declarations

Conflict of interests

All authors reviewed the manuscript and declared no competing financial interests.

Additional information

This article belongs to the Topical Collection: Approaching the Chinese Space Station - Microgravity Research in China

Guest Editors: Jian-Fu Zhao, Shuang-Feng Wang

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 1.40 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, J., Chen, H. & Cai, W. Transcriptomic Analysis Reveals the Effects of Microgravity on Rice Calli on Board the Chinese Spaceship Shenzhou 8. Microgravity Sci. Technol. 30, 807–816 (2018). https://doi.org/10.1007/s12217-018-9633-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-018-9633-6

Keywords

Navigation