Transcriptomic Analysis Reveals the Effects of Microgravity on Rice Calli on Board the Chinese Spaceship Shenzhou 8

  • Jing Jin
  • Haiying Chen
  • Weiming Cai
Original Article
Part of the following topical collections:
  1. Approaching the Chinese Space Station - Microgravity Research in China


Rice calli were loaded onto the stationary and rotating platforms of a biological incubator (SIMBOX) during spaceflight and ground control experiments. The calli in the SIMBOX were fixed with RNAlater in space after a 324-h spacecraft flight, as well as on the ground at the same time point in a ground control experiment. Microgravity-responsive (MR) transcripts were identified by a comparison of the spaceflight controls (F-μg) with the 1-g ground controls (G-1g) and 1-g inflight controls (F-1g). MapMan analysis was used to classify 955 MR transcripts. These transcripts mainly belonged to the following categories: cell wall modification and metabolism, glycolysis and the tricarboxylic acid (TCA) cycle, transcription factors, protein modification and degradation, hormone metabolism and signalling, calcium regulation, receptor-like kinase activity, and transporters. Here, we focused on the effects of microgravity on the plant cell wall and discussed the relationship between the variation in the cell wall and plant cell growth under microgravity.


Microgravity Spaceflight Transcriptome Oryza sativa Callus cells Cell wall Aquaporin 



Microgravity responsive


Science in Microgravity Box


2,4-dichlorophenoxyacetic acid


Spaceflight controls


1-g inflight controls


1-g ground controls



The Technology and Engineering Center for Space Utilization (Chinese Academy of Sciences) is acknowledged for project coordination. The spaceflight equipment was developed by the Shanghai Institute of Technical Physics (Chinese Academy of Sciences) Microarray analysis was conducted by Shanghai Biochip Co., Ltd., and Xue Li (Institute of Plant Physiology and Ecology, SIBS, CAS) helped with the data analysis.

Author Contributions

Conception, design, experimentation, dataanalysis and manuscript writing: Jing Jin Experimentation: Haiying Chen. Conception, design and final approval of manuscript: Weiming Cai.

Funding Information

This work was supported by the National Natural Science Foundation of China (Grant Nos. U1738107, 31570859, 31500236 and 31600684), Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA04020202-15, XDA04020415), and the China Manned Space Flight Technology Project.

Compliance with Ethical Standards

Conflict of interests

All authors reviewed the manuscript and declared no competing financial interests.

Supplementary material

12217_2018_9633_MOESM1_ESM.docx (1.4 mb)
(DOC 1.40 MB)


  1. Cai, W.M., Jin, J., Chen, H.Y.: Effects of gravity on growth of plant cells. Chin. J. Space Sci. 36(4), 552–556 (2016)Google Scholar
  2. Cannon, A.E., Salmi, M.L., Clark, G.B., Roux, S.: New insights in plant biology gained from research in space. Gravitational and Space Research 3(2), 3–10 (2015)Google Scholar
  3. Correll, M., Alexander, S., Rhea, P., Z, K.J.: the effects of microgravity on gene expression of Arabidopsis. 37th COSPAR Scientific Assembly (2008)Google Scholar
  4. Correll, M.J., Pyle, T.P., Millar, K.D., Sun, Y., Yao, J., Edelmann, R.E., Kiss, J.Z.: Transcriptome analyses of Arabidopsis thaliana seedlings grown in space: implications for gravity-responsive genes. Planta 238(3), 519–533 (2013). CrossRefGoogle Scholar
  5. Cui, D.Y., Neill, S.J., Tang, Z.C., Cai, W.M.: Gibberellin-regulated XET is differentially induced by auxin in rice leaf sheath bases during gravitropic bending. J. Exp. Bot. 56(415), 1327–1334 (2005). CrossRefGoogle Scholar
  6. Fengler, S., Spirer, I., Neef, M., Ecke, M., Hauslage, J., Hampp, R.: Changes in gene expression of arabidopsis thaliana cell cultures upon exposure to real and simulated partial-g forces. Microgravity Sci. Technol. 28, 319–329 (2016). CrossRefGoogle Scholar
  7. Fengler, S., Spirer, I., Neef, M., Ecke, M., Nieselt, K., Hampp, R.: A whole-genome microarray study of Arabidopsis thaliana semisolid callus cultures exposed to microgravity and nonmicrogravity related spaceflight conditions for 5 days on board of Shenzhou 8. Biomed. Res. Int. 2015, 547495 (2015). CrossRefGoogle Scholar
  8. Grant, G.T., Morris, E.R., Rees, D.A., Smith, P.J.C., Thom, D.: Biological interactions between polysaccharides and divalent cations: The egg-box model. Febs Letters 32(1), 195–198 (1973)CrossRefGoogle Scholar
  9. Hoson, T., Soga, K., Mori, R., Saiki, M., Nakamura, Y., Wakabayashi, K., Kamisaka, S.: Stimulation of elongation growth and cell wall loosening in rice coleoptiles under microgravity conditions in space. Plant Cell Physiol. 43(9), 1067–1071 (2002a)CrossRefGoogle Scholar
  10. Hoson, T., Soga, K., Mori, R., Saiki, M., Nakamura, Y., Wakabayashi, K., Kamisaka, S.: Cell wall changes involved in the automorphic curvature of rice coleoptiles under microgravity conditions in space. J. Plant Res. 117(6), 449–455 (2004). CrossRefGoogle Scholar
  11. Hoson, T., Soga, K., Wakabayashi, K., Hashimoto, T., Karahara, I., Yano, S., Tanigaki, F., Shimazu, T., Kasahara, H., Masuda, D., Kamisaka, S.: Growth stimulation in inflorescences of an Arabidopsis tubulin mutant under microgravity conditions in space. Plant Biol. (Stuttg.) 16 Suppl 1, 91–96 (2014). CrossRefGoogle Scholar
  12. Hoson, T., Soga, K., Wakabayashi, K., Kamisaka, S., Tanimoto, E.: Growth and cell wall changes in rice roots under microgravity conditions in space. Uchu Seibutsu Kagaku 16(3), 171–172 (2002b)Google Scholar
  13. Hu, L.W., Cui, D.Y., Neill, S., Cai, W.M.: OsEXPA4 and osRWC3 are involved in asymmetric growth during gravitropic bending of rice leaf sheath bases. Physiol. Plant. 130(4), 560–571 (2007). CrossRefGoogle Scholar
  14. Hu, L.W., Mei, Z.L., Zang, A.P., Chen, H.Y., Dou, X.Y., Jin, J., Cai, W.M.: Microarray analyses and comparisons of upper or lower flanks of rice shoot base preceding gravitropic bending. PloS One 8(9), e74646 (2013). CrossRefGoogle Scholar
  15. Jin, J., Chen, H., Cai, W.: Transcriptome analysis of oryza sativa calli under microgravity. Microgravity Sci. Technol. 27(6), 437–453 (2015). CrossRefGoogle Scholar
  16. Johnson, C.M., Subramanian, A., Pattathil, S., Correll, M.J., Kiss, J.Z.: Comparative transcriptomics indicate changes in cell wall organization and stress response in seedlings during spaceflight. Am J Bot. (2017)CrossRefGoogle Scholar
  17. Karthikeyan, A., Pandian, S.T., Ramesh, M.: High frequency plant regeneration from embryogenic callus of a popular indica rice (Oryza sativa L.) Physiol. Mol. Biol. Plants 15(4), 371–375 (2009). CrossRefGoogle Scholar
  18. Klymchuk, D.O., Kordyum, E.L., Vorobyova, T.V., Chapman, D.K., Brown, C.S.: Changes in vacuolation in the root apex cells of soybean seedlings in microgravity. Adv. Space Res. 31(10), 2283–2288 (2003)CrossRefGoogle Scholar
  19. Kwon, T., Sparks, J.A., Nakashima, J., Allen, S.N., Tang, Y., Blancaflor, E.B.: Transcriptional response of Arabidopsis seedlings during spaceflight reveals peroxidase and cell wall remodeling genes associated with root hair development. Am. J. Bot. 102(1), 21–35 (2015). CrossRefGoogle Scholar
  20. Li, H.S., Lu, J.Y., Zhao, H., Sun, Q., Yu, F.T., Pan, Y., Chen, Y., Su, L., Liu, M.: The impact of space environment on gene expression in Arabidopsis thaliana seedlings. SCIENCE CHINA Technol. Sci. 60(6), 1–9 (2017). CrossRefGoogle Scholar
  21. Libertini, E., Li, Y., McQueen-Mason, S.J.: Phylogenetic analysis of the plant endo-beta-1,4-glucanase gene family. J. Mol. Evol. 58(5), 506–515 (2004). CrossRefGoogle Scholar
  22. Martzivanou, M., Babbick, M., Cogoli-Greuter, M., Hampp, R.: Microgravity-related changes in gene expression after short-term exposure of Arabidopsis thaliana cell cultures. Protoplasma 229(2-4), 155–162 (2006). CrossRefGoogle Scholar
  23. Martzivanou, M., Hampp, R.: Hyper-gravity effects on the Arabidopsis transcriptome. Physiol. Plant. 118 (2), 221–231 (2003)CrossRefGoogle Scholar
  24. Munoz-Bertomeu, J., Miedes, E., Lorences, E.P.: Expression of xyloglucan endotransglucosylase/hydrolase (XTH) genes and XET activity in ethylene treated apple and tomato fruits. J. Plant Physiol. 170(13), 1194–1201 (2013). CrossRefGoogle Scholar
  25. Neef, M., Denn, T., Ecke, M., Hampp, R.: Intracellular calcium decreases upon hyper Gravity-Treatment of arabidopsis thaliana cell cultures. Microgravity Sci. Technol. 28, 331–336 (2016). CrossRefGoogle Scholar
  26. Page, R.D.: Treeview: an application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12(4), 357–358 (1996)Google Scholar
  27. Paul, A.L., Levine, H.G., McLamb, W., Norwood, K.L., Reed, D., Stutte, G.W., Wells, H.W., Ferl, R.J.: Plant molecular biology in the space station era: utilization of KSC fixation tubes with RNAlater. Acta Astronaut. 56(6), 623–628 (2005)CrossRefGoogle Scholar
  28. Paul, A.L., Zupanska, A.K., Ostrow, D.T., Zhang, Y., Sun, Y., Li, J.L., Shanker, S., Farmerie, W.G., Amalfitano, C.E., Ferl, R.J.: Spaceflight transcriptomes: unique responses to a novel environment. Astrobiology 12(1), 40–56 (2012). CrossRefGoogle Scholar
  29. Paul, A.L., Zupanska, A.K., Schultz, E.R., Ferl, R.J.: Organ-specific remodeling of the Arabidopsis transcriptome in response to spaceflight. BMC Plant Biol. 13, 112–121 (2013). CrossRefGoogle Scholar
  30. Peaucelle, A., Braybrook, S., Hofte, H.: Cell wall mechanics and growth control in plants: the role of pectins revisited. Front. Plant Sci. 3, 121–126 (2012). CrossRefGoogle Scholar
  31. Peaucelle, A., Louvet, R., Johansen, J.N., Hofte, H., Laufs, P., Pelloux, J., Mouille, G.: Arabidopsis phyllotaxis is controlled by the methyl-esterification status of cell-wall pectins. Curr. Biol. 18(24), 1943–1948 (2008). CrossRefGoogle Scholar
  32. Pelloux, J., Rusterucci, C., Mellerowicz, E.J.: New insights into pectin methylesterase structure and function. Trends Plant Sci. 12(6), 267–277 (2007). CrossRefGoogle Scholar
  33. Pischke, M.S., Huttlin, E.L., Hegeman, A.D., Sussman, M.R.: A transcriptome-based characterization of habituation in plant tissue culture. Plant Physiol. 140(4), 1255–1278 (2006). CrossRefGoogle Scholar
  34. Ruyters, G., Spiero, F., Legue, V., Palme, K.: Plant biology in space. Plant Biol. (Stuttg.) 16 Suppl 1, 1–3 (2014). CrossRefGoogle Scholar
  35. Salmi, M.L., Roux, S.J.: Gene expression changes induced by space flight in single-cells of the fern Ceratopteris richardii. Planta 229(1), 151–159 (2008). CrossRefGoogle Scholar
  36. Strohm, A.K., Baldwin, K.L., Masson, P.H.: Molecular mechanisms of root gravity sensing and signal transduction. Wiley Interdiscip. Rev. Dev. Biol. 1(2), 276–285 (2012). CrossRefGoogle Scholar
  37. Stutte, G.W., Monje, O., Hatfield, R.D., Paul, A.L., Ferl, R.J., Simone, C.G.: Microgravity effects on leaf morphology, cell structure, carbon metabolism and mRNA expression of dwarf wheat. Planta 224(5), 1038–1049 (2006). CrossRefGoogle Scholar
  38. Thimm, O., Blasing, O., Gibon, Y., Nagel, A., Meyer, S., Kruger, P., Selbig, J., Muller, L.A., Rhee, S.Y., Stitt, M.: MAPMAN: A user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 37(6), 914–939 (2004)CrossRefGoogle Scholar
  39. Tibbitts, T.W., Bula, R.J., Tibbits, T.W.: Growing plant in space. Chron Horticult 29(4), 53–55 (1989)Google Scholar
  40. Uozu, S., Tanaka-Ueguchi, M., Kitano, H., Hattori, K., Matsuoka, M.: Characterization of XET-related genes of rice. Plant Physiol. 122(3), 853–859 (2000)CrossRefGoogle Scholar
  41. Usadel, B., Nagel, A., Thimm, O., Redestig, H., Blaesing, O.E., Palacios-Rojas, N., Selbig, J., Hannemann, J., Piques, M.C., Steinhauser, D., Scheible, W.R., Gibon, Y., Morcuende, R., Weicht, D., Meyer, S., Stitt, M.: Extension of the visualization tool MapMan to allow statistical analysis of arrays, display of corresponding genes, and comparison with known responses. Plant Physiol. 138(3), 1195–1204 (2005). CrossRefGoogle Scholar
  42. Woodward, F.I.: Plant research in space and time. New Phytol. 176 (1), 1–3 (2007). CrossRefGoogle Scholar
  43. Zupanska, A.K., Denison, F.C., Ferl, R.J., Paul, A.L.: Spaceflight engages heat shock protein and other molecular chaperone genes in tissue culture cells of Arabidopsis thaliana. Am. J. Bot. 100(1), 235–248 (2013). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018
corrected publication 2018

Authors and Affiliations

  1. 1.Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina

Personalised recommendations