Skip to main content
Log in

Status of the Electrostatic Levitation Furnace (ELF) in the ISS-KIBO

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

The electrostatic levitation method is a containerless processing technique that utilizes Coulomb force between a charged sample and the surrounding electrodes. The Japan Aerospace Exploration Agency (JAXA) has been developing this technique for more than 20 years. In 2016, JAXA completed the flight model assembly, and the Electrostatic Levitation Furnace (ELF) for the International Space Station (ISS) was launched to the ISS. The ELF is mainly intended to handle oxide melts that are difficult to levitate on the ground based electrostatic levitator due to gravity and due to insufficient charging. ISS-ELF can measure the thermophysical properties (density, surface tension and viscosity) of high temperature melts above 2000 C. The thermophysical properties data of materials at high temperature is useful for the study of liquid states and improvement of numerical simulation by modeling the manufacturing processes using the liquid state. Moreover, the interfacial energy of immiscible melts will be measured by creating a core-shell droplet configuration which otherwise cannot be obtained on the ground due to sedimentation. This paper briefly describes the ELF facility and presents the results of a functional checkout that includes the density measurement of molten alumina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Babin, F., Gagné, J.-M., Paradis, P.-F., Coutures, J. P., Rifflet, J. C.: High temperature containerless laser processing of dielectric samples in microgravity: study of aerodynamic trapping. Micrograv. Sci. Technol. 7, 283–289 (1995)

    Google Scholar 

  • Castro, L.A., Hoyos, M.: Determination of the secondary Bjjerknes force in acoustic resonators on ground and in microgravity conditions. Micrograv. Sci. Technol. 28, 11–18 (2016)

    Article  Google Scholar 

  • Chung, S.K., Thiessen, D.B., Rhim, W.-K.: A noncontact measurement technique for the density and thermal expansion coefficient of solid and liquid materials. Rev. Sci. Instrum. 67, 3175 (1996)

    Article  Google Scholar 

  • Coutures, J.-P., Rifflet, J.-C., Florian, P., Massiot, D.: A thermal-analysis and very high-temperature Al-27 NMR-study of the solidification behavior in contactless conditions of liquid alumina–effects of the melt temperature and oxygen partial-pressure. Rev. Int. Hautes Temp. Refract. 29, 123 (1994)

    Google Scholar 

  • Egry, I.: Thermophysical property measurements in microgravity. High Temp.– High Press 32, 127–134 (2000)

    Article  Google Scholar 

  • Egry, I., Lohofer, G., Seyhan, I., Schneider, S., Feuerbacher, B.: Viscosity of eutectic Pd78Cu6Si16 measured by the oscillating drop technique in microgravity. Appl. Phys. Lett. 73, 462–463 (1998)

    Article  Google Scholar 

  • Egry, I., Ratke, L., Kolbe, M., Chatain, D., Curiotto, S., Battezzati, L., Johnson, E., Pryds, N: Interfacial properties of immiscible CoCu alloys. J. Mater. Sci. 45, 1979 (2010)

    Article  Google Scholar 

  • Elyutin, V.P., Mitin, B.S., Anisimov, I.S.: Izv. Akad. Nauk. SSSR Neorg. Mater. 9, 1585 (1973)

    Google Scholar 

  • Fuse, T., Nakamura, Y., Murakami, K., Shibasaki, K., Tamaru, H., Ohkuma, H., Yukizono, S., Ishikawa, T., Okada, J., Takada, T., Sakai, Y., Arai, T., Fujino, N.: Electrostatic levitation furnace experiment for “KIBO” on the international space station. In: 64th international astronautical congress Beijing, China IAC-13-A2.7.8 (2013)

  • Glorieux, B., Millot, F., Rifflet, J.-C., Coutures, J.-P.: Density of superheated and undercooled liquid alumina by a contactless method. Int. J. Thermophys. 20, 1085–1094 (1999)

    Article  Google Scholar 

  • Granier, B., Heurtault, S.: Rev. Int. Hautes Temp. Refract. 20, 31 (1983)

    Google Scholar 

  • Herlach, D M: Nonequilibrium solidification of undercooled metallic melts. Mater. Sci. Eng. R 12, 117–272 (1994)

    Article  Google Scholar 

  • Hyers, R.W., Rogers, J.R.: A review of electrostatic levitation for materials research. High Temp. Mater. Process. 27, 461–474 (2008)

    Article  Google Scholar 

  • Ikemiya, N., Umemoto, J., Hara, S., Ogino, K.: Surface tension and densities of molten Al2O3, Ti2O3, V2O5 and Nb2O5. ISIJ Int. 33, 156–165 (1993)

    Article  Google Scholar 

  • Ishikawa, T., Paradis, P.-F., Fujii, R., Saita, Y., Yoda, S.: Thermophysical properties of liquid and supercooled iridium by containerless methods. Int. J. Thermophys. 26, 883–904 (2005)

    Article  Google Scholar 

  • Ishikawa, T., Okada, J.T., Paradis, P.-F., Marahalli, V.K.: Towards microgravity experiments using the electrostatic levitation furnace (ELF) in the international space station (ISS). Trans. JSASS Aerospace Tech. Jpn. 12 ists29, Th_ 15–18 (2014)

    Google Scholar 

  • Kingery, W.D.: Surface tension of some liquid oxides and their temperature coefficients. J. Am. Ceram. Soc. 42, 6–10 (1959)

    Article  Google Scholar 

  • Kirshenbaum, A.D., Cahill, J.A.: The density of liquid aluminium oxide. J. Inorg. Nucl. Chem. 14, 283 (1960)

    Article  Google Scholar 

  • Kozakevitch, P.: Viscosité et éléments structuraux des aluminosilicates fondus: laitiers CaO-Al2O3-SiO2 entre 1600 et 2100C. Rev. Met. Paris 57(2), 149–160 (1960)

    Article  Google Scholar 

  • Lamb, H.: Hydrodynamics, 6th edn., pp. 473–639. Cambridge University Press, Cambridge, UK (1932)

  • Langstaff, D., Gunn, M., Greaves, G.N., Marsing, A., Kargl, F.: Aerodynamic levitator furnace for measuring thermophysical properties of refractory liquids. Rev. Sci. Instrum. 84, 124901 (2013)

    Article  Google Scholar 

  • Lord Rayleigh, J.S.W.: On the capillary phenomena of jets. Proc. R. Soc. Lond. 29, 71–97 (1879)

    Article  Google Scholar 

  • Luo, Y., Damaschke, B., Schneider, S., Lohöfer, G., Abrosimov, N., Czupalla, M., Samwer, K.: Containerless processing of SiGe-melts in EML under reduced gravity. NPJ Microgravity 2, 1 (2016)

    Article  Google Scholar 

  • Mitin, B.S., Nagabin, Y.A.: Density of liquid alumina. Russ. J. Phys. Chem., USSR 44, 741 (1970)

    Google Scholar 

  • Paradis, P.-F., Ishikawa, T., Yoda, S.: Position stability analysis of electrostatically levitated samples for thermophysical and structural properties measurements of materials. Space Technol. 22, 81–92 (2002)

    Google Scholar 

  • Paradis, P.-F., Ishikawa, T., Yoda, S.: Importance of sample rotation control for containerless materials processing on the ground and in microgravity. J Jpn. Soc. Microgravity Appl. 20, 218–225 (2003)

    Google Scholar 

  • Paradis, P.-F., Ishikawa, T., Saita, Y., Yoda, S.: Non-contact thermophysical property measurements of liquid and undercooled alumina. Jpn. J. Appl. Phys. 43, 1496–1500 (2004)

    Article  Google Scholar 

  • Paradis, P.-F., Ishikawa, T., Lee, G.-W., Holland-Moritz, D., Brillo, J., Rhim, W.-K., Okada, J.-T: Materials properties measurements and particle beam interactions studies using electrostatic levitation. Mater. Sci. Eng. R 76, 1–53 (2014)

    Article  Google Scholar 

  • Rasmussen, J.J.: Surface tension, density, and volume change on melting of Al2O3 systems, Cr2O3, and Sm2O3. J. Am. Ceram. Soc. 55, 326 (1972)

    Article  Google Scholar 

  • Rhim, W.-K., Chung, S.K., Barber, D., Man, K.F., Gutt, G., Rulison, A., Spujt, R.E.: An electrostatic levitator for high-temperature containerless materials processing in 1-G. Rev. Sci. Instrum. 64, 2961–2970 (1993)

    Article  Google Scholar 

  • Rhim, W.-K., Ohsaka, K., Paradis, P.-F., Spujt, R.E.: Noncontact technique for measuring surface tension and viscosity of molten materials using high temperature electrostatic levitation. Rev. Sci. Instrum. 70, 2996 (1999)

    Google Scholar 

  • Saito, T., Shiraishi, Y., Sakuma, Y.: Density measurement of molten metals by levitation technique at temperatures between 1800 and 2200 C. Trans. ISIJ 9, 118–126 (1969)

    Google Scholar 

  • Seidel, A., Soellner, W., Stenzel, C.: EML—an electromagnetic levitator for the international space station. J. Phys.: Conf. Ser. 327, 012057 (2011)

    Google Scholar 

  • Schroers, J., Bossuyt, S., Rhim, W.-K., Li, J., Zhou, Z., Johnson, W.L.: Enhanced temperature uniformity by tetrahedral laser heating. Rev. Sci. Instrum. 75, 4523–4525 (2004)

    Article  Google Scholar 

  • Shpil’rain, E.E., Yakinovich, K.A., Tsitsarkin, F.: Experimental study of the density of liquid alumina up to 2750 C. High Temp.– High Press 2, 191–198 (1973)

    Google Scholar 

  • Tamaru, H., Ishikawa, T., Okada, J.T., Nakamura, Y., Ohkuma, H., Yukizono, S., Sakai, Y., Takada, T.: Overview of the electrostatic levitation furnace (ELF) for the international space station (ISS). Int. J. Micrograv. Sci. Appl. 32, 32104 (2015)

    Google Scholar 

  • Trinh, E., Zwern, A., Wang, T.G.: An experimental study of small-amplitude drop oscillations in immiscible liquid systems. J. Fluid Mech. 115, 453–474 (1982)

    Article  Google Scholar 

  • Wang, T.G., Anilkumar, A.V., Lee, C.P., Lin, K.C.: Bifurcation of rotating liquid drops: results from USML-1 experiments in space. J. Fluid Mech. 276, 389–403 (1994)

    Article  Google Scholar 

  • Wang, T.G., Anilkumar, A.V., Lee, C.P.: Oscillations of liquid drops: results from USML-1 experiments in space. J. Fluid Mech. 308, 1–14 (1996)

    Article  Google Scholar 

  • Wartenberg, H.V., Wehner, G., Saren, E.: The Surface Tension of Molten Al2O3 and La2O3. Nach. Akad. Wiss. Goettingen 2, 65 (1936)

    Google Scholar 

  • Watanabe, M., Onedera, K., Tanaka, K., Taguchi, S., Serizawa, R., Hakamada, S., Nakamura, A., Mizuno, A., Ueno, S., Tsukada, T., Gotoh, H., Tanaka, T., Tamaru, H., Ishikawa, T.: Interfacial phenomena and thermophysical properties of molten steel and oxides—fundamental research of steel processing using electrostatic levitation furnace (ELF). Int. J. Micrograv. Sci. Appl. 33, 330212 (2016)

    Google Scholar 

  • Yoda, S., Koshikawa, N., Nakamura, T., Yu, J., Nakamura, T., Nakamura, Y., Yoshitomi, S., Karasawa, H., Ikada, T., Arai, Y., Kobayashi, M., Awa, Y., Shimoji, H., Morita, T.S., Shimada, S.: Evaluation of the positioning control function of an electrostatic levitation furnace for the space station. J. Jpn. Soc. Micrograv. Appl. 17, 76–86 (2000)

    Google Scholar 

  • Yu, J., Koshikawa, N., Arai, Y., Yoda, S., Saito, H.: Containerless solidification of oxide material using an electrostatic levitation furnace in microgravity. J. Cryst. Growth 231, 568–576 (2001)

    Article  Google Scholar 

  • Zubarev, Y.V., Kostikov, V.I., Mitin, B.S., Nagibin, Y.A., Nishcheta, V.V.: Some properties of liquid aluminum oxide. Izv. Akad. Nauk. SSSR Neorg. Mater. 5, 1563 (1969)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. W.-K. Rhim and Dr. P.-F. Paradis for their extensive assistance throughout the development of the ISS-ELF. The authors also appreciate the ISS crew members and ground operation staff for their support during the onboard assembly and check out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haruka Tamaru.

Additional information

This article belongs to the Topical Collection: Interdisciplinary Science Challenges for Gravity Dependent Phenomena in Physical and Biological Systems

Guest Editors: Jens Hauslage, Ruth Hemmersbach, Valentina Shevtsova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamaru, H., Koyama, C., Saruwatari, H. et al. Status of the Electrostatic Levitation Furnace (ELF) in the ISS-KIBO. Microgravity Sci. Technol. 30, 643–651 (2018). https://doi.org/10.1007/s12217-018-9631-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-018-9631-8

Keywords

Navigation