Abstract
Complex plasmas are low temperature plasmas that contain microparticles in addition to ions, electrons, and neutral particles. The microparticles acquire high charges, interact with each other and can be considered as model particles for effects in classical condensed matter systems, such as crystallization and fluid dynamics. In contrast to atoms in ordinary systems, their movement can be traced on the most basic level, that of individual particles. In order to avoid disturbances caused by gravity, experiments on complex plasmas are often performed under microgravity conditions. The PK-3 Plus Laboratory was operated on board the International Space Station from 2006 – 2013. Its heart consisted of a capacitively coupled radio-frequency plasma chamber. Microparticles were inserted into the low-temperature plasma, forming large, homogeneous complex plasma clouds. Here, we review the results obtained with recent analyzes of PK-3 Plus data: We study the formation of crystallization fronts, as well as the microparticle motion in, and structure of crystalline complex plasmas. We investigate fluid effects such as wave transmission across an interface, and the development of the energy spectra during the onset of turbulent microparticle movement. We explore how abnormal particles move through, and how macroscopic spheres interact with the microparticle cloud. These examples demonstrate the versatility of the PK-3 Plus Laboratory.
Similar content being viewed by others
References
Barkan, A., Merlino, R.L., D’Angelo, N.: Laboratory observation of the dust-acoustic wave mode. Phys. Plasmas 2(10), 3563 (1995). https://doi.org/10.1063/1.871121
Bozier, O., Veyssière, B.: Study of the mechanisms of dust suspension generation in a closed vessel under microgravity conditions. Microgravity Sci. Technol. 22, 233 (2010). https://doi.org/10.1007/s12217-010-9184-y
Caliebe, D., Arp, O., Piel, A.: Dynamics of dust-free cavities behind fast projectiles in a dusty plasma under microgrvity conditions. Phys. Plasmas 18, 073702 (2011). https://doi.org/10.1063/1.3606468
Colin, C.: Two-phase bubbly flows in microgravity: some open questions. Microgravity Sci. Technol. 13, 16 (2002). https://doi.org/10.1007/BF02872067
Dietz, C., Kretschmer, M., Steinmüller, B., Thoma, M.H.: Recent microgravity experiments with complex direct current plasmas. Contrib. Plasma Phys. (2017). https://doi.org/10.1002/ctpp.201700055
Dubin, D.H.E.: The phonon wake behind a charge moving relative to a two-dimensional plasma crystal. Phys. Plasmas 7, 3895 (2000). https://doi.org/10.1063/1.1308078
Du, C.R., Sütterlin, K.R., Jiang, K., Räth, C., Ivlev, A.V., Khrapak, S., Schwabe, M., Thomas, H.M., Fortov, V.E., Lipaev, A.M., Molotkov, V.I., Petrov, O.F., Malentschenko, Y., Yurtschichin, F., Lonchakov, Y., Morfill, G.E.: Experimental investigation on lane formation in complex plasmas under microgravity conditions. New J. Phys. 14, 073058 (2012a). https://doi.org/10.1088/1367-2630/14/7/073058
Du, C.R., Nosenko, V., Zhdanov, S., Thomas, H.M., Morfill, G.E.: Model experiment for studying lane formation in binary complex plasmas. EPL 99, 55001 (2012b). https://doi.org/10.1209/0295-5075/99/55001
Du, C.R., Nosenko, V., Thomas, H.M., Müller, A., Lipaev, A.M., Molotkov, V.I., Fortov, V.E., Ivlev, A.V.: Photophoretic force on microparticles in complex plasmas. New J. Phys. 19(7), 073015 (2017). https://doi.org/10.1088/1367-2630/aa724f
Feng, Y., Goree, J., Liu, B.: Accurate particle position measurement from images. Rev. Sci. Instrum. 78, 053704 (2007). https://doi.org/10.1063/1.2735920
Fisher, R., Avinash, K., Thomas, E., Merlino, R., Gupta, V.: Thermal energy density of dust in dusty plasmas: Experiment and theory. Phys. Rev. E 88(R), 031101 (2013). https://doi.org/10.1103/physreve.88.031101
Flanagan, T.M., Goree, J.: Observation of the spatial growth of self-excited dust-density waves. Phys. Plasmas 17, 123702 (2010). https://doi.org/10.1063/1.3524691
Fortov, V.E., Nefedov, A.P., Vaulina, O.S., Lipaev, A.M., Molotkov, V.I., Samaryan, A.A., Nikitskii, V.P., Ivanov, A.I., Savin, S.F., Kalmykov, A.V., Ev, A.Y.S., Vinogradov, P.V.: Dusty plasma induced by solar radiation under microgravitational conditions: an experiment on board the Mir orbiting space station. J. Exp. Theo. Phys. 87(6), 1087 (1998). https://doi.org/10.1134/1.558598
Goree, J., Morfill, G.E., Tsytovich, V.N., Vladimirov, S.V.: Theory of dust voids in plasmas. Phys. Rev. E 59(6), 7055 (1999). https://doi.org/10.1103/PhysRevE.59.7055
Gozadinos, G., Ivlev, A.V., Boeuf, J.P.: A fluid model for colloidal plasmas under microgravity conditions. New J. Phys. 5, 32 (2003). https://doi.org/10.1088/1367-2630/5/1/332
Havnes, O., Hartquist, T.W., Brattli, A., Kroesen, G.M.W., Morfill, G.: Dynamic Mach cone as a diagnostic method in reactive dusty plasma experiments. Phys. Rev. E 65(4) (2002). https://doi.org/10.1103/PhysRevE.65.045403
Hayashi, Y.: Ordering and behavior of fine particles in plasmas under gravity and microgravity conditions. Microgravity Sci. Technol. 16, 64 (2005). https://doi.org/10.1007/bf02945948
Heidemann, R., Couëdel, L., Zhdanov, S., Sütterlin, K., Schwabe, M., Thomas, H., Ivlev, A., Hagl, T., Morfill, G., Fortov, V., Molotkov, V., Petrov, O., Lipaev, A., Tokarev, V., Reiter, T., Vinogradov, P.: Comprehensive experimental study of heartbeat oscillations observed under microgravity conditions in the PK-3 Plus Laboratory on board the International Space Station. Phys. Plasmas 18, 053701 (2011) https://doi.org/10.1063/1.3574905
Himpel, M., Killer, C., Buttenschön, B., Melzer, A.: Three-dimensional single particle tracking in dense dust clouds by stereoscopy of fluorescent particles. Phys. Plasmas 19, 123704 (2012). https://doi.org/10.1063/1.4771687
Himpel, M., Bockwoldt, T., Killer, C., Menzel, K.O., Piel, A., Melzer, A.: Stereoscopy of dust density waves under microgravity: Velocity distributions and phase-resolved single-particle analysis. Phys. Plasmas 21, 033703 (2014). https://doi.org/10.1063/1.4868859
Hou, L.J., Piel, A.: Trapped particles by large-amplitude waves in two-dimensional Yukawa liquids. Phys. Plasmas 15, 073707 (2008). https://doi.org/10.1063/1.2956991
Huber, P.: Untersuchung Von 3-D Plasmakristallen. Ph.D. thesis, Ludwig-Maximilians-Universität München (2011)
Ivlev, A.V., Morfill, G.E., Thomas, H.M., Räth, C., Joyce, G., Huber, P., Kompaneets, R., Fortov, V.E., Lipaev, A.M., Molotkov, V.I., Reiter, T., Turin, M., Vinogradov, P.: First observation of electrorheological plasmas. Phys. Rev. Lett. 100, 095003 (2008). https://doi.org/10.1103/PhysRevLett.100.095003
Ivlev, A.V., Zhdanov, S.K., Thomas, H.M., Morfill, G.E.: Fluid phase separation in binary complex plasmas. EPL 85, 45001 (2009). https://doi.org/10.1209/0295-5075/85/45001
Jiang, K., Nosenko, V., Li, Y.F., Schwabe, M., Konopka, U., Ivlev, A.V., Fortov, V.E., Molotkov, V.I., Lipaev, A.M., Petrov, O.F., Turin, M.V., Thomas, H.M., Morfill, G.E.: Mach cones in a three-dimensional complex plasma. EPL 85, 45002 (2009). https://doi.org/10.1209/0295-5075/85/45002
Joyce, G., Lampe, M., Ganguli, G.: Instability-triggered phase transition to a dusty-plasma condensate. Phys. Rev. Lett. 88, 095006 (2002). https://doi.org/10.1103/PhysRevLett.88.095006
Khrapak, S., Samsonov, D., Morfill, G., Thomas, H., Yaroshenko, V., Rothermel, H., Hagl, T., Fortov, V., Nefedov, A., Molotkov, V., Petrov, O., Lipaev, A., Ivanov, A., Baturin, Y.: Compressional waves in complex (dusty) plasmas under microgravity conditions. Phys. Plasmas 10, 1 (2003). https://doi.org/10.1063/1.1525283
Khrapak, S.A., Klumov, B.A., Huber, P., Molotkov, V.I., Lipaev, A.M., Naumkin, V.N., Ivlev, A.V., Thomas, H.M., Schwabe, M., Morfill, G.E., Petrov, O.F., Fortov, V.E., Malentschenko, Y., Volkov, S.: Fluid-solid phase transitions in three-dimensional complex plasmas under microgravity conditions. Phys. Rev. E 85, 066407 (2012). https://doi.org/10.1103/PhysRevE.85.066407
Khrapak, A.G., Molotkov, V.I., Lipaev, A.M., Zhukhovitskii, D.I., Naumkin, V.N., Fortov, V.E., Petrov, O.F., Thomas, H.M., Khrapak, S.A., Huber, P., Ivlev, A., Morfill, G.: Complex plasma research under microgravity conditions: PK-3 Plus Laboratory on the International Space Station. Contrib. Plasma Phys. 56, 253 (2016). https://doi.org/10.1002/ctpp.201500102
Knapek, C.A., Huber, P., Mohr, D.P., Zaehringer, E., Molotkov, V.I., Lipaev, A.M., Naumkin, V., Konopka, U., Thomas, H.M., Fortov, V.E.: Ekoplasma — Experiments with grid electrodes in microgravity. In: AIP Conference Proceedings (Author(S)) (2018). https://doi.org/10.1063/1.5020392
Kompaneets, R., Morfill, G.E., Ivlev, A.V.: Wakes in complex plasmas: a self-consistent kinetic theory. Phys. Rev. E 93, 063201 (2016). https://doi.org/10.1103/PhysRevE.93.063201
Kraichnan, R.H.: Inertial range in two dimensional turbulence. Phys. Fluids 10, 1417 (1967). https://doi.org/10.1063/1.1762301
Küpper, M., de Beule, C., Wurm, G., Matthews, L.S., Kimery, J.B., Hyde, T.W.: Photophoresis on polydisperse basalt microparticles under microgravity. J. Aerosol Sci. 76, 126 (2014). https://doi.org/10.1016/j.jaerosci.2014.06.008
Leith, C.E.: Diffusion approximation for two-dimensional turbulence. Phys. Fluids 11, 671 (1968). https://doi.org/10.1063/1.1691968
Liao, C.T., Teng, L.W., Tsai, C.Y., Io, C.W., Ivanov, L.: Lagrangian-eulerian micromotion and wave heating in nonlinear self-excited dust-acoustic waves. Phys. Rev. Lett. 100, 185004 (2008). https://doi.org/10.1103/PhysRevLett.100.185004
Lipaev, A.M., Khrapak, S.A., Molotkov, V.I., Morfill, G.E., Fortov, V.E., Ivlev, A., Thomas, H.M., Khrapak, A.G., Naumkin, V.N., Ivanov, A.I., Tretschev, S.E., Padalka, G.I.: Void closure in complex plasmas under microgravity conditions. Phys. Rev. Lett. 98, 265006 (2007). https://doi.org/10.1103/PhysRevLett.98.265006
Liu, Y., Li, G., Kallio, S.: Hydrodynamic modeling of dense gas-particle turbulence flows under microgravity space environments. Microgravity Sci. Technol. 23, 1 (2010). https://doi.org/10.1007/s12217-010-9199-4
Melzer, A.: Connecting the wakefield instabilities in dusty plasmas. Phys. Rev. E 90, 053103 (2014). https://doi.org/10.1103/PhysRevE.90.053103
Melzer, A., Homann, A., Piel, A.: Experimental investigation of the melting transition of the plasma crystal. Phys. Rev. E 53(2757), 2766 (1996). https://doi.org/10.1103/PhysRevE.53.2757
Merlino, R.L.: Dust-acoustic waves driven by an ion-dust streaming instability in laboratory discharge dusty plasma experiments. Phys. Plasmas 16, 124501 (2009). https://doi.org/10.1063/1.3271155
Merlino, R.L.: 25 years of dust acoustic waves. J. Plasma Phys. p. 1 (2014). https://doi.org/10.1017/S0022377814000312
Mikikian, M., Couëdel, L., Cavarroc, M., Tessier, Y., Boufendi, L.: Self-excited void instability in dusty plasmas: plasma and dust cloud dynamics during the heartbeat instability. New J. Phys. 9, 268 (2007). https://doi.org/10.1088/1367-2630/9/8/268
Molotkov, V.I., Thomas, H.M., Lipaev, A.M., Naumkin, V.N., Ivlev, A.V., Khrapak, S.A.: Complex (dusty) plasma research under microgravity conditions: PK-3 Plus Laboratory on the International Space Station. Int. J. Microgravity Sci. Appl. 32(3), 320302 (2015). https://doi.org/10.15011/jasma.32.320302
Molotkov, V.I., Naumkin, V.N., Lipaev, A.M., Zhukhovitskii, D.I., Usachev, A.D., Fortov, V.E., Thomas, H.M.: Experiments on phase transitions in three-dimensional dusty plasma under microgravity conditions. J. Phys.: Conf. Ser. 927, 012037 (2017). https://doi.org/10.1088/1742-6596/927/1/012037
Morfill, G.E., Ivlev, A.V.: Complex plasmas: an interdisciplinary research field. Rev. Mod. Phys. 81, 1353 (2009). https://doi.org/10.1103/RevModPhys.81.1353
Morfill, G.E., Thomas, H.M., Konopka, U., Rothermel, H., Zuzic, M., Ivlev, A., Goree, J.: Condensed plasmas under microgravity. Phys. Rev. Lett. 83, 1598 (1999). https://doi.org/10.1103/PhysRevLett.83.1598
Naumkin, V.N., Zhukhovitskii, D.I., Molotkov, V.I., Lipaev, A.M., Fortov, V.E., Thomas, H.M., Huber, P., Morfill, G.E.: Density distribution of a dust cloud in three-dimensional complex plasmas. Phys. Rev. E 94, 033204 (2016). https://doi.org/10.1103/PhysRevE.94.033204
Nefedov, A.P., Morfill, G.E., Fortov, V.E., Thomas, H.M., Rothermel, H., Hagl, T., Ivlev, A.V., Zuzic, M., Klumov, B.A., Lipaev, A.M., Molotkov, V.I., Petrov, O.F., Gidzenko, Y.P., Krikalev, S.K., Shepherd, W., Ivanov, A.I., Roth, M., Binnenbruck, H., Goree, J.A., Semenov, Y.P.: PKE-Nefedov: plasma crystal experiments on the International Space Station. New J. Phys. 5, 33 (2003). https://doi.org/10.1088/1367-2630/5/1/333
Nosenko, V., Ivlev, A.V., Morfill, G.E.: Laser-induced rocket force on a microparticle in a complex (dusty) plasma. Phys. Plasmas 17, 123705 (2010). https://doi.org/10.1063/1.3525254
Pustylnik, M.Y., Ivlev, A.V., Sadeghi, N., Heidemann, R., Mitic, S., Thomas, H.M., Morfill, G.E.: On the heterogeneous character of the heartbeat instability in complex (dusty) plasmas. Phys. Plasmas 19, 103701 (2012). https://doi.org/10.1063/1.4757213
Pustylnik, M.Y., Fink, M.A., Nosenko, V., Antonova, T., Hagl, T., Thomas, H.M., Zobnin, A.V., Lipaev, A.M., Usachev, A.D., Molotkov, V.I., Petrov, O.F., Fortov, V.E., Rau, C., Deysenroth, C., Albrecht, S., Kretschmer, M., Thoma, M.H., Morfill, G.E., Seurig, R., Stettner, A., Alyamovskaya, V.A., Orr, A., Kufner, E., Lavrenko, E.G., Padalka, G.I., Serova, E.O., Samokutyayev, A.M., Christoforetti, S: Plasmakristall-4: New complex (dusty) plasma laboratory on board the International Space Station. Rev. Sci. Instrum. 87, 093505 (2016). https://doi.org/10.1063/1.4962696
Rao, N.N., Shukla, P.K., Yu, M.Y.: Dust-acoustic waves in dusty plasmas. Planet. Space Sci. 38(4), 543 (1990). https://doi.org/10.1016/0032-0633(90)90147-I
Rubin-Zuzic, M., Morfill, G.E., Thomas, H.M., Ivlev, A.V., Klumov, B.A., Rothermel, H., Bunk, W., Pompl, R., Havnes, O., Fouquét, A.: Kinetic development of crystallisation fronts in complex plasmas. Nat. Phys. 2, 181 (2006). https://doi.org/10.1038/nphys242
Samsonov, D., Goree, J.: Instabilities in a dusty plasma with ion drag and ionization. Phys. Rev. E 59(1), 1047 (1999). https://doi.org/10.1103/PhysRevE.59.1047
Samsonov, D., Goree, J., Ma, Z.W., Bhattacharjee, A., Thomas, H.M., Morfill, G.E.: Mach cones in a coulomb lattice and a dusty plasma. Phys. Rev. Lett. 83(18), 3649 (1999). https://doi.org/10.1103/PhysRevLett.83.3649
Samsonov, D., Ivlev, A.V., Morfill, G.E., Goree, J.: Long-range attractive and repulsive forces in a two-dimensional complex (dusty) plasma. Phys. Rev. E 63(R), 025401 (2001). https://doi.org/10.1103/PhysRevE.63.025401
Schwabe, M., Rubin-Zuzic, M., Zhdanov, S., Thomas, H.M., Morfill, G.E.: Highly resolved self-excited density waves in a complex plasma. Phys. Rev. Lett. 99(9), 095002 (2007). https://doi.org/10.1103/PhysRevLett.99.095002
Schwabe, M., Zhdanov, S.K., Thomas, H.M., Ivlev, A.V., Rubin-Zuzic, M., Morfill, G.E., Molotkov, V.I., Lipaev, A.M., Fortov, V.E., Reiter, T.: Nonlinear waves externally excited in a complex plasma under microgravity conditions. New J. Phys. 10, 033037 (2008). https://doi.org/10.1088/1367-2630/10/3/033037
Schwabe, M., Rubin-Zuzic, M., Zhdanov, S., Ivlev, A.V., Thomas, H.M., Morfill, G.E.: Formation of bubbles, blobs, and surface cusps in complex plasmas. Phys. Rev. Lett. 102, 255005 (2009). https://doi.org/10.1103/PhysRevLett.102.255005
Schwabe, M., Jiang, K., Zhdanov, S., Hagl, T., Huber, P., Ivlev, A.V., Lipaev, A.M., Molotkov, V.I., Naumkin, V.N., Sütterlin, K.R., Thomas, H.M., Fortov, V.E., Morfill, G.E., Skvortsov, A., Volkov, S.: Direct measurement of the speed of sound in a complex plasma under microgravity conditions. EPL 96, 55001 (2011). https://doi.org/10.1209/0295-5075/96/55001
Schwabe, M., Zhdanov, S., Räth, C.: Instability onset and scaling laws of an autooscillating turbulent flow in a complex (dusty) plasma. Phys. Rev. E 95(R), 041201 (2017a). https://doi.org/10.1103/PhysRevE.95.041201
Schwabe, M., Zhdanov, S., Räth, C., Trans, IEEE: Turbulence in an autooscillating complex plasma. Plasma Sci. PP, 1 (2017b). https://doi.org/10.1109/TPS.2017.2744682
Schwabe, M., Zhdanov, S.K., Hagl, T., Huber, P., Lipaev, A.M., Molotkov, V.I., Naumkin, V., Rubin-Zuzic, M., Vinogradov, P.V., Zähringer, E., Fortov, V.E., Thomas, H.M.: Observation of metallic sphere - complex plasma interactions in microgravity. New J. Phys. 19, 103019 (2017c). https://doi.org/10.1088/1367-2630/aa868c
Schweigert, V.A., Schweigert, I.V., Melzer, A., Homann, A., Piel, A.: Alignment and instability of dust crystals in plasmas. Phys. Rev. E 54, 4155 (1996). https://doi.org/10.1103/PhysRevE.54.4155
Schweigert, V.A., Schweigert, I.V., Nosenko, V., Goree, J.: Acceleration and orbits of charged particles beneath a monolayer plasma crystal. Phys. Plasmas 9(11), 4465 (2002). https://doi.org/10.1063/1.1512656
Shukla, P.K., Mamun, M.M.: Inatroduction to dusty plasma physics (IOP bristol) (2002)
Steinmüller, B., Dietz, C., Kretschmer, M., Thoma, M.H.: Crystallization of a three-dimensional complex plasma under laboratory conditions. Phys. Plasmas 24, 033705 (2017). https://doi.org/10.1063/1.4977902
Sütterlin, K. R., Wysocki, A., Ivlev, A.V., Räth, C., Thomas, H.M., Rubin-Zuzic, M., Goedheer, W.J., Fortov, V.E., Lipaev, A.M., Molotkov, V.I., Petrov, O.F., Morfill, G.E., Löwen, H.: Dynamics of lane formation in driven binary complex plasmas. Phys. Rev. Lett. 102, 085003 (2009). https://doi.org/10.1103/PhysRevLett.102.085003
Takahashi, K., Tonouchi, M., Adachi, S., Totsuji, H.: Study of cylindrical dusty plasmas in PK-4J; experiments. Int. J. Microgravity Sci. Appl. 31, 18 (2014)
Thoma, M.H., Höfner, H., Kretschmer, M., Ratynskaia, S., Morfill, G.E., Usachev, A., Zobnin, A., Petrov, O., Fortov, V.: Parabolic flight experiments with PK-4. Microgravity Sci. Technol. 18, 47 (2006). https://doi.org/10.1007/BF02870378
Thomas, E.: Driven dust acoustic waves with thermal effects: Comparison of experiment to fluid theory. Phys. Plasmas 17, 043701 (2010). https://doi.org/10.1063/1.3369846
Thomas, H.M., Morfill, G.E.: Melting dynamics of a plasma crystal. Nature 379, 806 (1996). https://doi.org/10.1038/379806a0
Thomas, H., Morfill, G.E., Demmel, V., Goree, J., Feuerbacher, B., Möhlmann, D.: Plasma crystal: coulomb crystallization in a dusty plasma. Phys. Rev. Lett. 73(5), 652 (1994). https://doi.org/10.1103/PhysRevLett.73.652
Thomas, H.M., Morfill, G.E., Ivlev, A.V., Nefedov, A.P., Fortov, V.E., Rothermel, H., Rubin-Zuzic, M., Lipaev, A.M., Molotkov, V.I., Petrov, O.F.: PKE-Nefedov—complex plasma research on the International Space Station. Micrograv. Sci. Technol. 16, 317 (2005). https://doi.org/10.1007/BF02945998
Thomas, H.M., Morfill, G.E., Fortov, V.E., Ivlev, A.V., Molotkov, V.I., Lipaev, A.M., Hagl, T., Rothermel, H., Khrapak, S.A., Sütterlin, R. K., Rubin-Zuzic, M., Petrov, O.F., Tokarev, V.I., Krikalev, S.K.: Complex plasma laboratory PK-3 Plus on the International Space Station. New J. Phys. 10, 033036 (2008). https://doi.org/10.1088/1367-2630/10/3/033036
Trottenberg, T., Blick, D., Piel, A.: Dust confinement and dust-acoustic waves in weakly magnetized anodic plasmas. Phys. Plasmas 13, 042105 (2006). https://doi.org/10.1063/1.2196347
Wang, Z.L., Gabriel, K.S., Zhu, Z.F.: The effects of gravity on the features of the interfacial waves in annular two-phase flow. Microgravity Sci. Technol. 15, 19 (2004). https://doi.org/10.1007/BF02870961
Williams, J.D.: Volumetric measurements of a spatially growing dust acoustic wave. Phys. Plasmas 19, 113701 (2012). https://doi.org/10.1063/1.4766813
Williams, J.D., Thomas, E.: Volumetric measurements of a spatially growing dust acoustic wave. Phys. Plasmas 14, 063702 (2007). https://doi.org/10.1063/1.2741457
Yang, L., Schwabe, M., Zhdanov, S., Thomas, H.M., Lipaev, A.M., Molotkov, V.I., Fortov, V.E., Zhang, J., Du, C.R.: Density waves at the interface of a binary complex plasma. EPL 117(2), 25001 (2017). https://doi.org/10.1209/0295-5075/117/25001
Zhdanov, S., Schwabe, M., Räth, C., Thomas, H.M., Morfill, G.E.: Wave turbulence observed in an auto-oscillating complex (dusty) plasma. EPL 110, 35001 (2015) https://doi.org/10.1209/0295-5075/110/35001
Zhukhovitskii, D.I., Fortov, V.E., Molotkov, V.I., Lipaev, A.M., Naumkin, V.N., Thomas, H.M., Ivlev, A.V., Schwabe, M., Morfill, G.E.: Nonviscous motion of a slow particle in the dust crystal under microgravity conditions. Phys. Rev. E 86, 016401 (2012). https://doi.org/10.1103/PhysRevE.86.016401
Zhukhovitskii, D.I., Fortov, V.E., Molotkov, V.I., Lipaev, A.M., Naumkin, V.N., Thomas, H.M., Ivlev, A.V., Schwabe, M., Morfill, G.E.: Measurement of the speed of sound by observation of the Mach cones in a complex plasma under microgravity conditions. Phys. Plasmas 22, 023701 (2015)
Zhukhovitskii, D.I., Naumkin, V.N., Khusnulgatin, A.I., Molotkov, V.I., Lipaev, A.M.: Dust coupling parameter of radio-frequency-discharge complex plasma under microgravity conditions. Phys. Rev. E 96, 043204 (2017). https://doi.org/10.1103/PhysRevE.96.043204
Author information
Authors and Affiliations
Corresponding author
Additional information
This article belongs to the Topical Collection: Interdisciplinary Science Challenges for Gravity Dependent Phenomena in Physical and Biological Systems
Guest Editors: Jens Hauslage, Ruth Hemmersbach, Valentina Shevtsova
The PK-3 Plus project was funded by the space agency of the Deutsches Zentrum für Luft- und Raumfahrt e.V. with funds from the Federal Ministry for Economy and Technology according to a resolution of the Deutscher Bundestag under grant number 50WM1203. A. M. Lipaev, V. N. Naumkin, and D. I. Zhukhovitskii are supported by the Russian Science Foundation Grant No. 14-12-01235. C.-R. Du acknowledges support by the National Natural Science Foundation of China (NNSFC), Grant No. 11405030.
Rights and permissions
About this article
Cite this article
Schwabe, M., Du, CR., Huber, P. et al. Latest Results on Complex Plasmas with the PK-3 Plus Laboratory on Board the International Space Station. Microgravity Sci. Technol. 30, 581–589 (2018). https://doi.org/10.1007/s12217-018-9602-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12217-018-9602-0