Skip to main content
Log in

Influence of Heterogeneous Plates on the Axisymmetrical Oscillations of a Cylindrical Drop

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

Natural and forced oscillations of a sandwiched fluid drop are investigated. In equilibrium, the drop is in the form of a cylinder. It is surrounded by another liquid and bounded axially by two parallel solid planes. The Hocking boundary conditions hold on the contact line: the velocity of the contact line motion is proportional to the deviation of the contact angle from its equilibrium value. In this case, the Hocking parameter (the so-called wetting parameter) is the proportionality coefficient. This parameter is considered as a function of coordinates, i.e. solid plates have a nonuniform surface. The axisymmetrical vibration force is parallel to the symmetry axis of the drop. The solution of the boundary value problem is found using the Fourier series of Fourier series expansion of the Laplace operator in eigenfunctions. Both the axisymmetrical mode and different azimuthal modes are excited because energy is transferred from the axisymmetrical modes to other modes due to nonuniform surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alabuzhev, A.A.: Behavior of a cylindrical bubble under vibrations. Vycisl. meh. splos. sred - Comput. Continuum Mech. 7, 151–161 (2014). (in Russian)

    Article  Google Scholar 

  • Alabuzhev, A.A.: Axisymmetric oscillations of a cylindrical droplet with a moving contact line. J. Appl. Mech. Tech. Phy. 57, 1006–1015 (2016)

    Article  MATH  Google Scholar 

  • Alabuzhev, A.A., Kaysina, M.I.: Influence of contact line motion on axisymmetric vibrations of a cylindrical bubble. Vestnik PGU. Fizika Bulletin of Perm State University. Series: Physics (2), 56–68. (in Russian) (2015)

  • Alabuzhev, A.A., Lyubimov, D.V.: Behavior of a cylindrical drop under multi-frequency vibration. Fluid Dyn. 40, 183–192 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Alabuzhev, A.A., Lyubimov, D.V.: Effect of the contact-line dynamics on the natural oscillations of a cylindrical droplet. J. Appl. Mech. Tech. Phy. 48, 686–693 (2007)

    Article  Google Scholar 

  • Alabuzhev, A.A., Lyubimov, D.V.: Effect of the contact-line dynamics on the oscillations of a compressed droplet. J. Appl. Mech. Tech. Phy. 53, 9–19 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Borkar, A., Tsamopoulus, J.: Boundary-layer analysis of dynamics of axisymmetric capillary bridges. Phys. Fluids A. 3, 2866–2874 (1991)

    Article  MATH  Google Scholar 

  • Bostwick, J.B., Steen, P.H.: Dynamics of sessile drops. Part 1. Inviscid theory. J. Fluid Mech. 760, 5–38 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Brunet, P., Eggers, J., Deegan, R.D.: Vibration-induced climbing of drops. Phys. Rev. Lett. 144501, 99 (2007)

    Google Scholar 

  • Brutin, D., Zhu, Z., Rahli, O., Xie, J., Liu, Q., Tadrist, L.: Sessile drop in microgravity: creation, contact angle and interface. Microgravity Sci. Technol. 21, 67–76 (2009)

    Article  Google Scholar 

  • Diana, A., Castillo, M., Brutin, D., Steinberg, T.: Sessile drop wettability in normal and reduced gravity. Microgravity Sci. Technol. 24, 195–202 (2012)

    Article  Google Scholar 

  • Demin, V.A.: Problem of the free oscillations of a capillary bridge. Fluid Dyn. 43, 524–532 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Fayzrakhmanova, I.S., Straube, A.V.: Stick-slip dynamics of an oscillated sessile drop. Phys. Fluids 072104, 21 (2009)

    MATH  Google Scholar 

  • Fayzrakhmanova, I.S., Straube, A.V., Shklyaev, S.: Bubble dynamics atop an oscillating substrate: Interplay of compressibility and contact angle hysteresis. Phys. Fluids 102105, 23 (2011)

    MATH  Google Scholar 

  • Fernandez, J., Sanchez, S.P., Tinao I., Porter J., Ezquerro J.M.: The CFVib experiment: control of fluids in microgravity with vibrations. Microgravity Sci. Technol. 29(5), 351–364 (2017)

    Article  Google Scholar 

  • Hocking, L.M.: The damping of capillary-gravity waves at a rigid boundary. J. Fluid Mech. 179, 253–266 (1987)

    Article  MATH  Google Scholar 

  • Ivantsov, A.O.: Acoustic oscillations of semispherical drop. Vestnik PGU. Fizika Bulletin of Perm University. Series: Physics. (3), 1623 (2012)

  • Kartavyh, N.N., Shklyaev, S.V.: About parametrical resonance of semicylindrical drop on oscillating solid plane. Vestnik PGU. Fizika Bulletin of Perm University. Series: Physics. (1), 2328 (2007)

  • Korenchenko, A.E., Beskachko, V.P.: Oscillations of a sessile droplet in open air. Phys. Fluids 25, 112106 (2013)

    Article  Google Scholar 

  • van Lengerichal, H.B., Steen, P.H.: Energy dissipation and the contact-line region of a spreading bridge. J. Fluid Mech. 709, 111–141 (2012)

    Article  MATH  Google Scholar 

  • Liang, R., Kawaji, M.: Surface oscillation of a liquid bridge induced by single and multiple vibrations. Microgravity Sci. Technol. 21, 31–37 (2009)

    Article  Google Scholar 

  • Lyubimov, D.V., Lyubimova, T.P., Shklyaev, S.V.: Non-axisymmetric oscillations of a hemispherical drop. Fluid Dyn. 39, 851–862 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Lyubimov, D.V., Lyubimova, T.P., Shklyaev, S.V.: Behavior of a drop on an oscillating solid plate. Phys. Fluids 18, 012101 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Mettu, S., Chaudhury, M.K.: Vibration spectroscopy of a sessile drop and its contact line. Langmuir 28, 14100–14106 (2012)

    Article  Google Scholar 

  • Miles, J.W.: The capillary boundary layer for standing waves. J. Fluid Mech. 222, 197–205 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Mugele, F., Baret, J.-C.: Electrowetting: from basics to applications. J. Phys.: Condens. Matter. 17, 705–774 (2005)

    Google Scholar 

  • Perlin, M., Schultz, W.W., Liu, Z.: High Reynolds number oscillating contact lines. Wave Motion. 40, 41–56 (2004)

    Article  MATH  Google Scholar 

  • Sanyal, A., Basu, S.: How natural evaporation temporally self-tunes an oscillating sessile droplet to resonate at different modes. Langmuir 32(19), 4784–4791 (2016)

    Article  Google Scholar 

  • Savva, N., Kalliadasis, S.: Droplet motion on inclined heterogeneous substrates. J. Fluid Mech. 725, 462–491 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Savva, N., Kalliadasis, S.: Low-frequency vibrations of two-dimensional droplets on heterogeneous substrates. J. Fluid Mech. 754, 515–549 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Shevtsova, V.M., Melnikov, D.E.: Thermocapillary convection in a liquid bridge subjected to interfacial cooling. Microgravity Sci. Technol. 18, 128–131 (2006)

    Article  Google Scholar 

  • Shklyaev, S., Straube, A.V.: Linear oscillations of a hemispherical bubble on a solid substrate. Phys. Fluids. 20, 052102 (2008)

    Article  MATH  Google Scholar 

  • Sudo, S., Goto, A., Juwano, H., Hamate, Y., Yano, T., Hoshika, K.: The dynamic behavior of liquid droplets on vibrating plate. J. JSEM 10, 38–45 (2010)

    Google Scholar 

  • Ting, C.-L., Perlin, M.: Boundary conditions in the vicinity of the contact line at a vertically oscillating upright plate: an experimental investigation. J. Fluid Mech. 295, 263–300 (1995)

    Article  Google Scholar 

  • Zhang, L., Thiessen, D.B.: Capillary-wave scattering from an infinitesimal barrier and dissipation at dynamic contact lines. J. Fluid Mech. 719, 295–313 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Alabuzhev.

Additional information

This article belongs to the Topical Collection: Topical Collection on Non-Equilibrium Processes in Continuous Media under Microgravity

Guest Editor: Tatyana Lyubimova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alabuzhev, A.A. Influence of Heterogeneous Plates on the Axisymmetrical Oscillations of a Cylindrical Drop. Microgravity Sci. Technol. 30, 25–32 (2018). https://doi.org/10.1007/s12217-017-9571-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-017-9571-8

Keywords

Navigation