Skip to main content

The CFVib Experiment: Control of Fluids in Microgravity with Vibrations

Abstract

The Control of Fluids in Microgravity with Vibrations (CFVib) experiment was selected for the 2016 Fly Your Thesis! programme as part of the 65th ESA Parabolic Flight Campaign. The aim of the project is to observe the potentially complex behaviour of vibrated liquids in weightless environments and to investigate the extent to which small-amplitude vibrations can be used to influence and control this behaviour. Piezoelectric materials are used to generate high-frequency vibrations to drive surface waves and large-scale reorientation of the interface. The theory of vibroequilibria, which treats the quasi-stationary surface configurations achieved by this reorientation, was used to predict interesting parameter regimes and interpret fluid behaviour. Here we describe the scientific motivation, objectives, and design of the experiment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Arbell, H., Fineberg, J.: Pattern formation in two-frequency forced parametric waves. Phys. Rev. E 65, 036224 (2002)

    Article  Google Scholar 

  2. Barnard, B.J.S., Pritchard, W.G.: Cross-waves. Part 2. Experiments. J. Fluid Mech. 55, 245–255 (1972)

    Article  Google Scholar 

  3. Benjamin, T.B., Ursell, F.: The stability of a plane free surface of a liquid in vertical periodic motion. Proc. R. Soc. Lond. A 225, 505–515 (1954)

    MathSciNet  Article  MATH  Google Scholar 

  4. Beyer, K., Gawriljuk, I., Günther, M., Lukovsky, I., Timokha, A.: Compressible potential flows with free boundaries. Part I: Vibrocapillary equilibria. Z. Angew. Math. Mech. 81(4), 261–271 (2001)

    MathSciNet  Article  MATH  Google Scholar 

  5. Beyer, K., Günther, M., Timokha, A.: Variational and finite element analysis of vibroequilibria. Comput. Methods Appl. Math 4(3), 290–323 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  6. Beysens, D.: Vibrations in space as an artificial gravity? Europhys. News 37(3), 22–25 (2006)

    Article  Google Scholar 

  7. Callens, N., Ventura-Traveset, J., de Lophem, T.L., Lopez de Echazarreta, C., Pletser, V., van Loon, J.J.W.A.: ESA parabolic flights, drop tower and centrifuge opportunities for university students. Microgravity Sci. Technol. 23(2), 181–189 (2011)

    Article  Google Scholar 

  8. Callens, N., Ha, L., Galeone, P.: Benefits of ESA gravity-related hands-on programmes for university students’ careers. Microgravity Sci. Technol. 28(5), 519–527 (2016)

    Article  Google Scholar 

  9. Edwards, W.S., Fauve, S.: Patterns and quasi-patterns in the Faraday experiment. J. Fluid Mech. 278, 123–148 (1994)

    MathSciNet  Article  Google Scholar 

  10. Faraday, M.: On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces. Philos. Trans. R. Soc. Lond. 121, 299–340 (1831)

    Article  Google Scholar 

  11. Feng, Z.C.: Transition to traveling waves from standing waves in a rectangular container subjected to horizontal excitations. Phys. Rev. Lett. 79(3), 415–418 (1997)

    Article  Google Scholar 

  12. Fernández, J., Tinao, I., Porter, J., Laverón-Simavilla, A.: Instabilities of vibroequilibria in rectangular containers. Phys. Fluids 29, 024108 (2017)

    Article  Google Scholar 

  13. Funakoshi, M., Inoue, S.: Surface waves due to resonant horizontal oscillation. J. Fluid Mech. 192, 219–247 (1988)

    MathSciNet  Article  Google Scholar 

  14. Gandikota, G., Chatain, D., Amiroudine, S., Lyubimova, T., Beysens, D.: Frozen-wave instability in near-critical hydrogen subjected to horizontal vibration under various gravity fields. Phys. Rev. E 89, 012309 (2014)

    Article  Google Scholar 

  15. Ganiev, R.F., Lakiza, V.D., Tsapenko, A.S.: Dynamic behavior of the free liquid surface subject to vibrations under conditions of near-zero gravity. Sov. Appl. Mech. 13(5), 499–503 (1977). translated from from Prikladnaya Mekhanika

    Article  Google Scholar 

  16. Gaponenko, Y.A., Shevtsova, V.: Shape of diffusive interface under periodic excitations at different gravity levels. Microgravity Sci. Technol. 28(4), 431–439 (2016)

    Article  Google Scholar 

  17. Gaponenko, Y.A., Torregrosa, M., Yasnou, V., Mialdun, A., Shevtsova, V.: Dynamics of the interface between miscible liquids subjected to horizontal vibration. J. Fluid Mech. 784, 342–372 (2015)

    Article  Google Scholar 

  18. Garrabos, Y., Beysens, D., Lecoutre, C., Dejoan, A., Polezhaev, V., Emelianov, V.: Thermoconvectional phenomena induced by vibrations in supercritical SF 6 under weightlessness. Phys. Rev. E 75, 056317 (2007)

    Article  Google Scholar 

  19. Garrett, C.J.R.: On Cross-waves. J. Fluid Mech. 41, 837–849 (1970)

    Article  MATH  Google Scholar 

  20. Gavrilyuk, I., Lukovsky, I., Timokha, A.: Two-dimensional variational vibroequilibria and faraday’s drops. Z. Angew. Math. Phys. 55, 1015–1033 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  21. Gresho, P.M., Sani, R.L.: The effects of gravity modulation on the stability of a heated fluid layer. J. Fluid Mech. 40, 783–806 (1970)

    Article  MATH  Google Scholar 

  22. Hasegawa, K., Abe, Y., Kaneko, A., Yamamoto, Y., Aoki, K.: Visualization measurement of streaming flows associated with a single-acoustic levitator. Microgravity Sci. Technol. 21(1), 9 (2009)

    Article  Google Scholar 

  23. Jenson, R.M., Weislogel, M.M., Klatte, J., Dreyer, M.E.: Dynamic fluid interface experiments aboard the international space station: Model benchmarking dataset. J. Spacecr. Rocket. 47(4), 670–679 (2010)

    Article  Google Scholar 

  24. Jones, A.F.: The generation of cross-waves in a long deep channel by parametric resonance. J. Fluid Mech. 138, 53–74 (1984)

    MathSciNet  Article  MATH  Google Scholar 

  25. Kapitza, P.L.: Pendulum with a vibrating suspension. Usp. Fiz. Nauk. 44, 7–15 (1951)

    Article  Google Scholar 

  26. Kudrolli, A., Pier, B., Gollub, J.P.: Superlattice patterns in surface waves. Phys. D 123, 99–111 (1998)

    MathSciNet  Article  MATH  Google Scholar 

  27. Lyubimov, D.V., Cherepanov, A.A. : Development of a steady relief at the interface of fluids in a vibrational field. Fluid Dyn. Res. 21(6), 849–854 (1986). translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza

    Article  MATH  Google Scholar 

  28. Lyubimov, D.V., Cherepanov, A.A., Lyubimova, T.P., Roux, B.: Interface orienting by vibration. C. R. Acad. Sci. Paris Ser. IIb 325, 391–396 (1997)

    MATH  Google Scholar 

  29. Lyubimov, D.V., Lyubimova, T.P., Cherepanov, A.A.: Dynamics of Interfaces in Vibrational Fields. Fizmatlit, Russian (2003)

    Google Scholar 

  30. Mialdun, A., Ryzhkov, I.I., Melnikov, D.E., Shevtsova, V.: Experimental evidence of thermal vibrational convection in a nonuniformly heated fluid in a reduced gravity environment. Phys. Rev. Lett. 101, 084501 (2008)

    Article  Google Scholar 

  31. Miles, J., Henderson, D.: Parametrically forced surface waves. Annu. Rev. Fluid Mech. 22, 143–165 (1990)

    MathSciNet  Article  MATH  Google Scholar 

  32. Miles, J.W.: Resonantly forced surface waves in a circular container. J. Fluid Mech. 149, 15–31 (1984)

    MathSciNet  Article  MATH  Google Scholar 

  33. Perez-Gracia, J.M., Porter, J., Varas, F., Vega, J.M.: Subharmonic capillary-gravity waves in large containers subject to horizontal vibrations. J. Fluid Mech. 739, 196–228 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  34. Pletser, V., Rouquette, S., Friedrich, U., Clervoy, J.F., Gharib, T., Gai, F., Mora, C.: The first european parabolic flight campaign with the Airbus A310 ZERO-g. Microgravity Sci. Technol. 28(6), 587–601 (2016)

    Article  Google Scholar 

  35. Porter, J., Tinao, I., Laverón-Simavilla, A., Lopez, C.A.: Pattern selection in a horizontally vibrated container. Fluid Dyn. Res. 44, 065501 (2012)

    Article  MATH  Google Scholar 

  36. Porter, J., Tinao, I., Laverón-Simavilla, A., Rodríguez, J.: Onset patterns in a simple model of localized parametric forcing. Phys. Rev. E 88, 042913 (2013)

    Article  Google Scholar 

  37. Salgado Sánchez, P., Porter, J., Tinao, I., laverón-simavilla, A.: Dynamics of weakly coupled parametrically forced oscillators. Phys. Rev. E 94, 022216 (2016)

    Article  Google Scholar 

  38. Schmidt, W.: Quickly changing acceleration forces (QCAFs) vibration analysis on the A300 ZERO-g. Microgravity Sci. Technol. 15(1), 42 (2004)

    Article  Google Scholar 

  39. Shevtsova, V.: IVIDIL Experiment onboard the ISS. Adv. Space Res. 46(5), 672–679 (2010)

    Article  Google Scholar 

  40. Shevtsova, V., Gaponenko, Y., Melnikov, D., Ryzhkov, I., Mialdun, A.: Study of thermoconvective flows induced by vibrations in reduced gravity. Acta Astronaut. 66, 166–173 (2010a)

    Article  Google Scholar 

  41. Shevtsova, V., Ryzhkov, I.I., Melnikov, D.E., Gaponenko, Y.A., Mialdun, A.: Experimental and theoretical study of vibration-induced thermal convection in low gravity. J. Fluid Mech. 648, 53–82 (2010b)

    MathSciNet  Article  MATH  Google Scholar 

  42. Shevtsova, V., Mialdun, A., Melnikov, D., Ryzhkov, I., Gaponenko, Y., Saghir, Z., Lyubimova, T., Legros, J.C.: The IVIDIL experiment onboard the ISS: Thermodiffusion in the presence of controlled vibrations. C.R. Mec. 339, 310–317 (2011)

    Article  Google Scholar 

  43. Shevtsova, V., Gaponenko, Y.A., Sechenyh, V., Melnikov, D.E., Lyubimova, T., Mialdun, A.: Dynamics of a binary mixture subjected to a temperature gradient and oscillatory forcing. J. Fluid Mech. 767, 290–322 (2015)

    MathSciNet  Article  Google Scholar 

  44. Shevtsova, V., Gaponenko, Y.A., Yasnou, V., Mialdun, A., Nepomnyashchy, A.: Two-scale wave patterns on a periodically excited miscible liquid–liquid interface. J. Fluid Mech. 795, 409–422 (2016)

    Article  Google Scholar 

  45. Talib, E., Jalikop, S.V., Juel, A.: The influence of viscosity on the frozen wave instability: theory and experiment. J. Fluid Mech. 584, 45–68 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  46. Tinao, I., Porter, J., Laverón-Simavilla, A., Fernández, J.: Cross-waves excited by distributed forcing in the gravity-capillary regime. Phys. Fluids 26, 024111 (2014)

    Article  Google Scholar 

  47. Varas, F., Vega, J.M.: Modulated surface waves in large-aspect-ratio horizonally vibrated containers. J. Fluid. Mech. 579, 271–304 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  48. Vega, J.M., Knobloch, E., Martel, C.: Nearly inviscid Faraday waves in annular containers of moderately large aspect ratio. Phys. D 154, 313–336 (2001)

    Article  MATH  Google Scholar 

  49. Weislogel, M.M., Ross, H.D. : Surface settling in partially filled containers upon step reduction in gravity. Tech. rep (1990)

  50. Weislogel, M.M., Jenson, R., Chen, Y., Collicott, S.H., Klatte, J., Dreyer, M.: The capillary flow experiments aboard the International Space Station: Status. Acta Astronaut. 65, 861–869 (2009)

    Article  Google Scholar 

  51. Wolf, G.H.: The dynamic stabilization of the Rayleigh-Taylor instability and the corresponding dynamic equilibrium. Z. Physik. 227, 291–300 (1969)

    Article  Google Scholar 

  52. Wolf, G.H.: Dynamic stabilization of the interchange instability of a liquid-gas interface. Phys. Rev. Lett. 24, 444–446 (1970)

    Article  Google Scholar 

  53. Zyuzgin, A.V., Ivanov, A.I., Polezhaev, V.I., Putin, G.F., Soboleva, E.B., et al.: Convective motions in near-critical fluids under real zero-gravity conditions. Cosm. Res. 39(2), 175–186 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the ESA Education Office in connection with the Fly Your Thesis! programme and the 65th ESA Parabolic Flight Campaign, and by the Ministerio de Economía y Competitividad under Projects No. ESP2013-45432-P and No. ESP2015-70458-P. We thank the European Low Gravity Research Association (ELGRA) for their valuable scientific support and Novespace for all their technical advice and contributions during the project. We thank Trenz Electronic for their Analog Discovery device, Analog Devices (ADI) for providing the accelerometers, and KrytoxTM Performance Lubricants, a business of The Chemours Company, for supplying the vacuum oil. Finally, we thank the Spanish User Support and Operations Centre (E-USOC) and the Escuela Técnica Superior de Ingeniería Aeronáutica y del Espacio at the Universidad Politécnica de Madrid, which have supported this project from the beginning.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Fernandez.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fernandez, J., Sánchez, P.S., Tinao, I. et al. The CFVib Experiment: Control of Fluids in Microgravity with Vibrations. Microgravity Sci. Technol. 29, 351–364 (2017). https://doi.org/10.1007/s12217-017-9556-7

Download citation

Keywords

  • Fluid mechanics
  • Microgravity experiment
  • Instability
  • Vibroequilibria
  • Parabolic flight