The CFVib Experiment: Control of Fluids in Microgravity with Vibrations

  • J. Fernandez
  • P. Salgado Sánchez
  • I. Tinao
  • J. Porter
  • J. M. Ezquerro
Original Article

Abstract

The Control of Fluids in Microgravity with Vibrations (CFVib) experiment was selected for the 2016 Fly Your Thesis! programme as part of the 65th ESA Parabolic Flight Campaign. The aim of the project is to observe the potentially complex behaviour of vibrated liquids in weightless environments and to investigate the extent to which small-amplitude vibrations can be used to influence and control this behaviour. Piezoelectric materials are used to generate high-frequency vibrations to drive surface waves and large-scale reorientation of the interface. The theory of vibroequilibria, which treats the quasi-stationary surface configurations achieved by this reorientation, was used to predict interesting parameter regimes and interpret fluid behaviour. Here we describe the scientific motivation, objectives, and design of the experiment.

Keywords

Fluid mechanics Microgravity experiment Instability Vibroequilibria Parabolic flight 

References

  1. Arbell, H., Fineberg, J.: Pattern formation in two-frequency forced parametric waves. Phys. Rev. E 65, 036224 (2002)CrossRefGoogle Scholar
  2. Barnard, B.J.S., Pritchard, W.G.: Cross-waves. Part 2. Experiments. J. Fluid Mech. 55, 245–255 (1972)CrossRefGoogle Scholar
  3. Benjamin, T.B., Ursell, F.: The stability of a plane free surface of a liquid in vertical periodic motion. Proc. R. Soc. Lond. A 225, 505–515 (1954)MathSciNetCrossRefMATHGoogle Scholar
  4. Beyer, K., Gawriljuk, I., Günther, M., Lukovsky, I., Timokha, A.: Compressible potential flows with free boundaries. Part I: Vibrocapillary equilibria. Z. Angew. Math. Mech. 81(4), 261–271 (2001)MathSciNetCrossRefMATHGoogle Scholar
  5. Beyer, K., Günther, M., Timokha, A.: Variational and finite element analysis of vibroequilibria. Comput. Methods Appl. Math 4(3), 290–323 (2004)MathSciNetCrossRefMATHGoogle Scholar
  6. Beysens, D.: Vibrations in space as an artificial gravity? Europhys. News 37(3), 22–25 (2006)CrossRefGoogle Scholar
  7. Callens, N., Ventura-Traveset, J., de Lophem, T.L., Lopez de Echazarreta, C., Pletser, V., van Loon, J.J.W.A.: ESA parabolic flights, drop tower and centrifuge opportunities for university students. Microgravity Sci. Technol. 23(2), 181–189 (2011)CrossRefGoogle Scholar
  8. Callens, N., Ha, L., Galeone, P.: Benefits of ESA gravity-related hands-on programmes for university students’ careers. Microgravity Sci. Technol. 28(5), 519–527 (2016)CrossRefGoogle Scholar
  9. Edwards, W.S., Fauve, S.: Patterns and quasi-patterns in the Faraday experiment. J. Fluid Mech. 278, 123–148 (1994)MathSciNetCrossRefGoogle Scholar
  10. Faraday, M.: On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces. Philos. Trans. R. Soc. Lond. 121, 299–340 (1831)CrossRefGoogle Scholar
  11. Feng, Z.C.: Transition to traveling waves from standing waves in a rectangular container subjected to horizontal excitations. Phys. Rev. Lett. 79(3), 415–418 (1997)CrossRefGoogle Scholar
  12. Fernández, J., Tinao, I., Porter, J., Laverón-Simavilla, A.: Instabilities of vibroequilibria in rectangular containers. Phys. Fluids 29, 024108 (2017)CrossRefGoogle Scholar
  13. Funakoshi, M., Inoue, S.: Surface waves due to resonant horizontal oscillation. J. Fluid Mech. 192, 219–247 (1988)MathSciNetCrossRefGoogle Scholar
  14. Gandikota, G., Chatain, D., Amiroudine, S., Lyubimova, T., Beysens, D.: Frozen-wave instability in near-critical hydrogen subjected to horizontal vibration under various gravity fields. Phys. Rev. E 89, 012309 (2014)CrossRefGoogle Scholar
  15. Ganiev, R.F., Lakiza, V.D., Tsapenko, A.S.: Dynamic behavior of the free liquid surface subject to vibrations under conditions of near-zero gravity. Sov. Appl. Mech. 13(5), 499–503 (1977). translated from from Prikladnaya MekhanikaCrossRefGoogle Scholar
  16. Gaponenko, Y.A., Shevtsova, V.: Shape of diffusive interface under periodic excitations at different gravity levels. Microgravity Sci. Technol. 28(4), 431–439 (2016)CrossRefGoogle Scholar
  17. Gaponenko, Y.A., Torregrosa, M., Yasnou, V., Mialdun, A., Shevtsova, V.: Dynamics of the interface between miscible liquids subjected to horizontal vibration. J. Fluid Mech. 784, 342–372 (2015)CrossRefGoogle Scholar
  18. Garrabos, Y., Beysens, D., Lecoutre, C., Dejoan, A., Polezhaev, V., Emelianov, V.: Thermoconvectional phenomena induced by vibrations in supercritical SF 6 under weightlessness. Phys. Rev. E 75, 056317 (2007)CrossRefGoogle Scholar
  19. Garrett, C.J.R.: On Cross-waves. J. Fluid Mech. 41, 837–849 (1970)CrossRefMATHGoogle Scholar
  20. Gavrilyuk, I., Lukovsky, I., Timokha, A.: Two-dimensional variational vibroequilibria and faraday’s drops. Z. Angew. Math. Phys. 55, 1015–1033 (2004)MathSciNetCrossRefMATHGoogle Scholar
  21. Gresho, P.M., Sani, R.L.: The effects of gravity modulation on the stability of a heated fluid layer. J. Fluid Mech. 40, 783–806 (1970)CrossRefMATHGoogle Scholar
  22. Hasegawa, K., Abe, Y., Kaneko, A., Yamamoto, Y., Aoki, K.: Visualization measurement of streaming flows associated with a single-acoustic levitator. Microgravity Sci. Technol. 21(1), 9 (2009)CrossRefGoogle Scholar
  23. Jenson, R.M., Weislogel, M.M., Klatte, J., Dreyer, M.E.: Dynamic fluid interface experiments aboard the international space station: Model benchmarking dataset. J. Spacecr. Rocket. 47(4), 670–679 (2010)CrossRefGoogle Scholar
  24. Jones, A.F.: The generation of cross-waves in a long deep channel by parametric resonance. J. Fluid Mech. 138, 53–74 (1984)MathSciNetCrossRefMATHGoogle Scholar
  25. Kapitza, P.L.: Pendulum with a vibrating suspension. Usp. Fiz. Nauk. 44, 7–15 (1951)CrossRefGoogle Scholar
  26. Kudrolli, A., Pier, B., Gollub, J.P.: Superlattice patterns in surface waves. Phys. D 123, 99–111 (1998)MathSciNetCrossRefMATHGoogle Scholar
  27. Lyubimov, D.V., Cherepanov, A.A. : Development of a steady relief at the interface of fluids in a vibrational field. Fluid Dyn. Res. 21(6), 849–854 (1986). translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i GazaCrossRefMATHGoogle Scholar
  28. Lyubimov, D.V., Cherepanov, A.A., Lyubimova, T.P., Roux, B.: Interface orienting by vibration. C. R. Acad. Sci. Paris Ser. IIb 325, 391–396 (1997)MATHGoogle Scholar
  29. Lyubimov, D.V., Lyubimova, T.P., Cherepanov, A.A.: Dynamics of Interfaces in Vibrational Fields. Fizmatlit, Russian (2003)Google Scholar
  30. Mialdun, A., Ryzhkov, I.I., Melnikov, D.E., Shevtsova, V.: Experimental evidence of thermal vibrational convection in a nonuniformly heated fluid in a reduced gravity environment. Phys. Rev. Lett. 101, 084501 (2008)CrossRefGoogle Scholar
  31. Miles, J., Henderson, D.: Parametrically forced surface waves. Annu. Rev. Fluid Mech. 22, 143–165 (1990)MathSciNetCrossRefMATHGoogle Scholar
  32. Miles, J.W.: Resonantly forced surface waves in a circular container. J. Fluid Mech. 149, 15–31 (1984)MathSciNetCrossRefMATHGoogle Scholar
  33. Perez-Gracia, J.M., Porter, J., Varas, F., Vega, J.M.: Subharmonic capillary-gravity waves in large containers subject to horizontal vibrations. J. Fluid Mech. 739, 196–228 (2014)MathSciNetCrossRefMATHGoogle Scholar
  34. Pletser, V., Rouquette, S., Friedrich, U., Clervoy, J.F., Gharib, T., Gai, F., Mora, C.: The first european parabolic flight campaign with the Airbus A310 ZERO-g. Microgravity Sci. Technol. 28(6), 587–601 (2016)CrossRefGoogle Scholar
  35. Porter, J., Tinao, I., Laverón-Simavilla, A., Lopez, C.A.: Pattern selection in a horizontally vibrated container. Fluid Dyn. Res. 44, 065501 (2012)CrossRefMATHGoogle Scholar
  36. Porter, J., Tinao, I., Laverón-Simavilla, A., Rodríguez, J.: Onset patterns in a simple model of localized parametric forcing. Phys. Rev. E 88, 042913 (2013)CrossRefGoogle Scholar
  37. Salgado Sánchez, P., Porter, J., Tinao, I., laverón-simavilla, A.: Dynamics of weakly coupled parametrically forced oscillators. Phys. Rev. E 94, 022216 (2016)CrossRefGoogle Scholar
  38. Schmidt, W.: Quickly changing acceleration forces (QCAFs) vibration analysis on the A300 ZERO-g. Microgravity Sci. Technol. 15(1), 42 (2004)CrossRefGoogle Scholar
  39. Shevtsova, V.: IVIDIL Experiment onboard the ISS. Adv. Space Res. 46(5), 672–679 (2010)CrossRefGoogle Scholar
  40. Shevtsova, V., Gaponenko, Y., Melnikov, D., Ryzhkov, I., Mialdun, A.: Study of thermoconvective flows induced by vibrations in reduced gravity. Acta Astronaut. 66, 166–173 (2010a)CrossRefGoogle Scholar
  41. Shevtsova, V., Ryzhkov, I.I., Melnikov, D.E., Gaponenko, Y.A., Mialdun, A.: Experimental and theoretical study of vibration-induced thermal convection in low gravity. J. Fluid Mech. 648, 53–82 (2010b)MathSciNetCrossRefMATHGoogle Scholar
  42. Shevtsova, V., Mialdun, A., Melnikov, D., Ryzhkov, I., Gaponenko, Y., Saghir, Z., Lyubimova, T., Legros, J.C.: The IVIDIL experiment onboard the ISS: Thermodiffusion in the presence of controlled vibrations. C.R. Mec. 339, 310–317 (2011)CrossRefGoogle Scholar
  43. Shevtsova, V., Gaponenko, Y.A., Sechenyh, V., Melnikov, D.E., Lyubimova, T., Mialdun, A.: Dynamics of a binary mixture subjected to a temperature gradient and oscillatory forcing. J. Fluid Mech. 767, 290–322 (2015)MathSciNetCrossRefGoogle Scholar
  44. Shevtsova, V., Gaponenko, Y.A., Yasnou, V., Mialdun, A., Nepomnyashchy, A.: Two-scale wave patterns on a periodically excited miscible liquid–liquid interface. J. Fluid Mech. 795, 409–422 (2016)CrossRefGoogle Scholar
  45. Talib, E., Jalikop, S.V., Juel, A.: The influence of viscosity on the frozen wave instability: theory and experiment. J. Fluid Mech. 584, 45–68 (2007)MathSciNetCrossRefMATHGoogle Scholar
  46. Tinao, I., Porter, J., Laverón-Simavilla, A., Fernández, J.: Cross-waves excited by distributed forcing in the gravity-capillary regime. Phys. Fluids 26, 024111 (2014)CrossRefGoogle Scholar
  47. Varas, F., Vega, J.M.: Modulated surface waves in large-aspect-ratio horizonally vibrated containers. J. Fluid. Mech. 579, 271–304 (2007)MathSciNetCrossRefMATHGoogle Scholar
  48. Vega, J.M., Knobloch, E., Martel, C.: Nearly inviscid Faraday waves in annular containers of moderately large aspect ratio. Phys. D 154, 313–336 (2001)CrossRefMATHGoogle Scholar
  49. Weislogel, M.M., Ross, H.D. : Surface settling in partially filled containers upon step reduction in gravity. Tech. rep (1990)Google Scholar
  50. Weislogel, M.M., Jenson, R., Chen, Y., Collicott, S.H., Klatte, J., Dreyer, M.: The capillary flow experiments aboard the International Space Station: Status. Acta Astronaut. 65, 861–869 (2009)CrossRefGoogle Scholar
  51. Wolf, G.H.: The dynamic stabilization of the Rayleigh-Taylor instability and the corresponding dynamic equilibrium. Z. Physik. 227, 291–300 (1969)CrossRefGoogle Scholar
  52. Wolf, G.H.: Dynamic stabilization of the interchange instability of a liquid-gas interface. Phys. Rev. Lett. 24, 444–446 (1970)CrossRefGoogle Scholar
  53. Zyuzgin, A.V., Ivanov, A.I., Polezhaev, V.I., Putin, G.F., Soboleva, E.B., et al.: Convective motions in near-critical fluids under real zero-gravity conditions. Cosm. Res. 39(2), 175–186 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Escuela Técnica Superior de Ingeniería Aeronáutica y del EspacioUniversidad Politécnica de MadridMadridSpain

Personalised recommendations