Skip to main content
Log in

Membrane Fluidity Changes, A Basic Mechanism of Interaction of Gravity with Cells?

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

All life on earth has been established under conditions of stable gravity of 1g. Nevertheless, in numerous experiments the direct gravity dependence of biological processes has been shown on all levels of organization, from single molecules to humans. According to the underlying mechanisms a variety of questions, especially about gravity sensation of single cells without specialized organelles or structures for gravity sensing is being still open. Biological cell membranes are complex structures containing mainly lipids and proteins. Functional aspects of such membranes are usually attributed to membrane integral proteins. This is also correct for the gravity dependence of cells and organisms which is well accepted since long for a wide range of biological systems. However, it is as well established that parameters of the lipid matrix are directly modifying the function of proteins. Thus, the question must be asked, whether, and how far plain lipid membranes are affected by gravity directly. In principle it can be said that up to recently no real basic mechanism for gravity perception in single cells has been presented or verified. However, it now has been shown that as a basic membrane parameter, membrane fluidity, is significantly dependent on gravity. This finding might deliver a real basic mechanism for gravity perception of living organisms on all scales. In this review we summarize older and more recent results to demonstrate that the finding of membrane fluidity being gravity dependent is consistent with a variety of published laboratory experiments. We additionally point out to the consequences of these recent results for research in the field life science under space condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aloia, R.C., Boggs, J.M.: Membrane fluidity in Biology. Academic Press Inc, Orlando, USA (1985)

    Google Scholar 

  • Anken, R., Rahmann, H.: How animals use and scope with gravity. Astrobiology: The quest for the conditions of life. In: Horneck et al. (ed.) . Springer, Berlin (2002)

  • Baysse, C., Cullinane, M., Denervaud, V., Burrowes, E., Dow, J.M., Morrisey, J.P., Tam, L., Trevors, J.T., OGara, F.: Modulation of quorum sensing in Pseudomonas aeruginosa though alterations of membrane parameters. Microbiology 151, 2529–2542 (2005)

    Article  Google Scholar 

  • Boheim, G., Hanke, W., Eibl, H.: Lipid phase transition in planar lipid bilayer membrane and its effect on carrier- and pore- mediated ion transport. Proc. Natl. Acad. Sci. USA 77, 3403–3407 (1980)

    Article  Google Scholar 

  • Boheim, G., Hanke, W., Jung, G.: Alamethicin pore formation Voltage-dependent flip-flop of alpha-helix dipoles. Biophys. Struc. Mech. 9-3, 181–191 (1983)

    Article  Google Scholar 

  • Blancaflor, E.B. (ed.): Plant gravitropism: Methods and protocols. Humana Press, Springer Protocols, New York (2015)

  • Blicher, A., Heimburg. T.: Voltage-gated lipid ion channels. PLOS One 8, e65707 (2013). arXiv:1209.3640 [physics.bio-ph] (2013)

  • Cafiso, D.S.: Alamethicin A peptide model for voltage gating and protein-membrane interactions. Ann. Rev. Biophys. Bioml. Struc. 23, 141–165 (1994)

    Article  Google Scholar 

  • Clarke, M.S.F., Vanderburg, C.R., Feeback, D.L.: The effect of acute microgravity on mechanically induced membrane damage and membrane-membrane fusion events. Nasa Johnson Space Centre. pp. 1–31 (2001)

  • Catala, R., Salinas, J.: Temperature-perception, molecules and mechanisms. J. Appl. Biomed. 8, 189–198 (2010)

    Article  Google Scholar 

  • Chen, R., Rosen, E., Masson, P.H.: Gravitropism in higher plants. Plant Physiol. 120, 343–350 (1999)

    Article  Google Scholar 

  • DePietro, F.R., Byrd, J.C.: Effects of membrane fluidity on [H3 TCP] binding to PCP receptors. J. Mol. Neurosci. 1, 45–52 (1990)

    Article  Google Scholar 

  • Dowhan, W., Bogdanov, M.: Functional roles of lipids in membranes. In: Vance and Vance (ed.) Biochemistry of lipids, lipoproteins and membranes, pp 1–35. Elsevier, (2002)

  • Edidin, M.: Lipids on the frontier: a century of cell-membrane bilayers. Nat. Rev. Mol. Cell Biol. 4(5), 414–418 (2003)

    Article  Google Scholar 

  • Fernandes Nievas, G.A., Barrantes, F.J., Antollini, S.S.: Modulation of nicotinic acetylcholine receptor conformational state by free fatty acids and steroids. J. Biol. Chem. 283, 21478–21486 (2008)

    Article  Google Scholar 

  • Graesboell, K., Sasse-Middelhoff, H., Heimburg, T.: The thermodynamics of general and local anaesthesia. Biophys. J. 106, 2143–2156 (2014)

    Article  Google Scholar 

  • Goldermann, M., Hanke, W.: Ion channels are sensitive to gravity changes. Microgravity Sci. Technol. XIII/1, 35–38 (2001)

    Article  Google Scholar 

  • Goldstein, D.: The effects of drugs on membrane fluidity. Ann. Rev. Pharmacol. Toxicol. 24, 43–64 (1983)

    Article  Google Scholar 

  • Hanke, W., Schlue, W.-R.: Planar lipid bilayer experiments Techniques and application. Academic Press, Oxford, UK (1993)

    Google Scholar 

  • Häder, D.-P., Braun, M., Grimm, D., Hemmersbach, R.: Gravireceptors in eukaryotes—a comparison of case studies on the cellular level. npj Microgravity 3, 13 (2017)

    Article  Google Scholar 

  • Häder, D.-P., Richter, P., Lebert, M.: Signal transduction in gravisensing flagellates. Signal Transduct. 6, 422–431 (2006)

    Article  Google Scholar 

  • Heimburg, T., Jackson, A.D.: The thermodynamics of general anaesthesia. Biophys. J. 92, 3159–3165 (2006)

    Article  Google Scholar 

  • Idkaidek, N., Arafat, T.: Effect of microgravity on the pharmacokinetics of Ibuprofen in humans. J. Clin. Pharm. 51, 1685–1689 (2011)

    Article  Google Scholar 

  • Janmey, P.A., Kinnunen, P.K.J.: Biophysical properties of lipids and dynamic membranes. Trends Cell Biol. 16(10), 538–546 (2006)

    Article  Google Scholar 

  • Jung, G., Brückner, H., Schmitt, H.: Properties of the membrane modifying polypeptide antibiotics alamethicin and trichotoxin A-40. In: Voelter, W., Weitzel, G. (eds.) Structure and Activity of Natural Peptides, pp 75–114. de Gruyter, Berlin (1981)

    Google Scholar 

  • Kanduser, M., Sentjure, M., Miklavcic, D.: Cell fluidity related to electroporation and resealing. Eur. Biophys. J 35, 196–204 (2006)

    Article  Google Scholar 

  • Klinke, N.: Alamethicin als sensor für membraneigenschaften dissertation. Universität Hohenheim, Stuttgart, Germany (1999)

    Google Scholar 

  • Klinke, N., Goldermann, M., Hanke, W.: The properties of alamethicin incorporated into planar lipid bilayers under the influence of microgravity. Acta Astronaut. 47, 771–773 (2000)

    Article  Google Scholar 

  • Klymchuk, D.O., Baranenko, V.V., Vorobyova, T.V., Dubovoy, V.D. http://adsabs.harvard.edu/abs/2004cosp...35.1356K (2006)

  • Kohn, F.P.M.: High throughput fluorescent screening of membrane potential and intracellular calcium concentration under variable gravity conditions. Microgravity Sci. Technol. 25, 113–120 (2013)

    Article  Google Scholar 

  • Kordyum, E.L., Neduhka, O.M., Grakhov, V.P., Melnik, A.K., Vorbyova, T.M., Klimeko, O.M., Zhupanov, I.V.: Study of the influence of simulated microgravity on the cytoplasmic membrane lipid bilayer of plant cells. Kosm. Nauka Tehnol. 21, 40–47 (2015)

    Article  Google Scholar 

  • Leitgeb, B., Szekeres, A., Manczinger, L., Vagvölgyi, C, Kredics, L.: The history of alamethicin: A review of the most extensively studied peptaibol. Chem. Biodivers. 4, 1027–1051 (2007)

    Article  Google Scholar 

  • Liu, X.-Y., Yang, Q., Kamo, N., Miyake, J.: Effects of liposome type and membrane fluidity on drug-membrane partitioning analyzed by immobilized liposome chromatography. J. Chromatogr. A 913, 123–131 (2001)

    Article  Google Scholar 

  • Los, D.A., Murata, N.: Membrane fluidity and its role in the perception of environmental signals. BBA 1666, 1242–157 (2004)

    Article  Google Scholar 

  • Lohse, M.J., Klotz, K.-N., Schwabe, U.: Effects of temperature and membrane phase transitions on ligand binding to alpha2receptors of human platelets. Mol. Pharmacol. 29, 228–234 (1985)

    Google Scholar 

  • Mak, D.D., Web, W.W.: Two classes of alamethicin transmembrane channels Molecular models from single channel properties. Biophys. J. 69, 2323–2336 (1995)

    Article  Google Scholar 

  • Meissner, K., Piqueira, J.R.C., Hanke, W.: Fluorescent and dispersion experiments on biological membranes under micro-gravity. J. Gravitational Physiol. II(2), 195–196 (2004)

    Google Scholar 

  • Meissner, K., Hanke, W.: Action potential properties are gravity dependent. Microgravity Sci. Technol. XVII-2, 38–43 (2005)

    Article  Google Scholar 

  • Mikami, K., Murata, N.: Membrane fluidity and the perception of environmental signals in cyanobacteria and plants. Progress Lipid Res. 42, 527–543 (2003)

    Article  Google Scholar 

  • Mosgaard, L.D., Heimburg, T.: Lipid ion channels and the role of proteins. Accounts Chem. Res. 46(12), 2966–2976 (2013)

    Article  Google Scholar 

  • Murata, N., Los, D.A.: Membrane fluidity and temperature perception. Plant Physiol. 115, 875–879 (1997)

    Article  Google Scholar 

  • Nickerson, C.A., Ott, C.M., Wilson, J.W., Ramamurthy, R., Pierson, D.L.: Microbial responses to microgravity and other low-shear environments. Microbiol. And Mol. Biol. Rev. 68(2), 325–361 (2004)

    Article  Google Scholar 

  • Pavy-Le Traon, A., Salvin, S., Soulez-LaRiviere, C., Pujos, M., Guell, A., Houin, G.: Pharmacology in space: pharmacotherapy. Adv. Space Biol. Med. 6, 93–105 (1997)

    Article  Google Scholar 

  • Pieta, P., Mirza, J., Lipowski, J.: Direct visualization of the alamethicin pore formed in a planar phospholipid matrix. PNAS 109, 21223–21227 (2012)

    Article  Google Scholar 

  • Pollard, T.D., Earnshoaw, W.C.: Cell Biology. Elsevier, Philadelphia, USA (2008)

    Google Scholar 

  • Riede, I.: Membrane fluidity About the origin of autoimmunity. Open J. Immunol. 4, 9–13 (2014)

    Article  Google Scholar 

  • Seeger, H.M., Aldovandi, L., Alessandrini, A., Facci, P.: Changes in single K(+) channel behavior induced by a lipid phase transition. Biophys. J. 1(99), 3675–3683 (2010)

    Article  Google Scholar 

  • Sieber, M., Hanke, W., Kohn, F.P.M.: Modification of membrane fluidity by gravity. Open J. Biophys. 4(12), 4, 105–111 (2014)

    Google Scholar 

  • Sieber, M., Kaltenbach, S., Hanke, W., Kohn, F.: Conductance and capacity of plain lipid membranes under conditions of variable gravity. J. Biomed. Sci. Eng. 2016(9), 361–366 (2016)

    Article  Google Scholar 

  • Spector, A.A., Yorek, M.A.: Membrane lipid composition and cellular function. J. Lipid Res. 26, 1015–1035 (1985)

    Google Scholar 

  • Steller, L., Kreir, M., Selzer, R.: Natural and artificial ion channels for bio-sensing platforms. Nat. Bioanal. Chem. 402, 209–230 (2012)

    Article  Google Scholar 

  • Tillman, T.S., Cascio, M.: Effects of membrane lipids on ion channel structure and function. Cell Biochem. Biophys. 38, 161–184 (2003)

    Article  Google Scholar 

  • Van Loon, J.J.W.A.: Mechanomics and physicomics in gravisensing. Microgravity Sci. Technol. 21, 159–167 (2009)

    Article  Google Scholar 

  • Volinsky, R., Kolusheva, S., Berman, A., Jelinek, R.: Microscopic visualization of Alamethicin incorporation into model membrane monolayers. Langmuir 20, 11084–11091 (2004)

    Article  Google Scholar 

  • Wiedemann, M., Rahmann, H., Hanke, W.: Gravitational impact on ion channels incorporated into planar lipid bilayers. In: TiTien and Ottova (ed.) Planar Lipid Bilayers and their Applications, pp 669–698. Elesevier Sciences (2003)

  • Wiedemann, M., Kohn, P.M., Rösner, H., Hanke, W.R.L.: Self-organization and pattern-formation in neuronal systems under conditions of variable gravity. In: Springer Complexity. ISBN 978-3-642-14471-4. Springer Publishing Comp. (2011)

  • Woolley, G.A., Wallace, B.A.: Model ion channels: Gramicidin and alamethicin. J. Membr. Biol. 129(2), 109–36 (1992)

    Google Scholar 

  • Wotring, V.E.: Space Pharmacology. Springer, New York, USA (2012)

    Book  Google Scholar 

  • Zanello, L.P., Aztiria, E., Antollini, A., Barrantes, F.J.: Nicotinic acetylcholine receptor channels are influenced by the physical state of their membrane environment. Biophys. J. 70, 2155–2164 (1996)

    Article  Google Scholar 

  • Zhou, Y., Mao, H., Joddar, B., Umeki, N., Sako, Y., Wada, K.-I., Nishioka, C., Takahashi, E., Wang, Y., Ito, Y.: The significance of membrane fluidity of feeder cell-derived substances for maintenance of IPS cell stemless, vol. 5, p 11386 (2015). doi:10.1038/srep11386

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Hanke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohn, F., Hauslage, J. & Hanke, W. Membrane Fluidity Changes, A Basic Mechanism of Interaction of Gravity with Cells?. Microgravity Sci. Technol. 29, 337–342 (2017). https://doi.org/10.1007/s12217-017-9552-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-017-9552-y

Keywords

Navigation