Skip to main content
Log in

Investigation on Effect of Gravity Level on Bubble Distribution and Liquid Turbulence Modification for Horizontal Channel Bubbly Flow

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

Bubbly flows in the horizontal channel or pipe are often seen in industrial engineering fields, so it is very necessary to fully understand hydrodynamics of horizontal bubbly flows so as to improve industrial efficiency and to design an efficient bubbly system. In this paper, in order to fully understand mechanisms of phase distribution and liquid–phase turbulence modulation in the horizontal channel bubbly flow, the influence of gravity level on both of them were investigated in detail with the developed Euler–Lagrange two–way coupling method. For the present investigation, the buoyance on bubbles in both sides of the channel always points to the corresponding wall in order to study the liquid–phase turbulence modulation by bubbles under the symmetric physical condition. The present investigation shows that the gravity level has the important influence on the wall–normal distribution of bubbles and the liquid–phase turbulence modulation; the higher the gravity level is, the more bubbles can overcome the wall–normal resistance to accumulate near the wall, and the more obvious the liquid–phase turbulence modulation is. It is also discovered that interphase forces on the bubbles are various along the wall–normal direction, which leads to the fact that the bubble located in different wall–normal places has a different wall–normal velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Bottin, M., Berlandis, J.P., Hervieu, E., Lancee, M., Marchand, M., Öztürka, O. C., Serre, G.: Experimental investigation of a developing two–phase bubbly flow in horizontal pipe. Int. J. Multiphase flow 60, 161–179 (2014)

    Article  Google Scholar 

  • Clift, R., Grace, J.R., Weber, M.E.: Bubbles Drops and Particle. Academic Press, New York (1978)

    Google Scholar 

  • Detsch, R.M.: Small air bubbles in reagent grade water and seawater: 1. Rise velocities of 20 to 1000 m diameter bubbles. J. Geophys. Res. 96, 8901–8906 (1991)

    Article  Google Scholar 

  • Elghobashi, S.: On predicting particle–laden turbulent flows. Appl. Sci. Res. 52, 309–329 (1994)

    Article  Google Scholar 

  • Ferrante, A., Elghobashi, S.: On the physical mechanisms of drag reduction in a spatially developing turbulent boundary layer laden with bubbles. J. Fluid Mech. 503, 345–355 (2004)

    Article  MATH  Google Scholar 

  • Ferrante, A., Elghobashi, S.: Reynolds number effect on drag reduction in a microbubble–laden spatially developing turbulent boundary layer. J. Fluid Mech. 543, 93–106 (2005)

    Article  MATH  Google Scholar 

  • Giusti, A., Lucci, F., Soldati, A.: Influence of the lift force in direct numerical simulation of upward/downward turbulent channel flow laden with surfactant contaminated microbubbles. Chem. Eng. Sci. 60, 6176–6187 (2005)

    Article  Google Scholar 

  • Haoues, L., Olekhnovitch, A., Teyssedou, A.: Numerical study of the influence of the internal structure of a horizontal bubbly flow on the average void fraction. Nucl. Eng. Des. 239, 147–157 (2009)

    Article  Google Scholar 

  • Hazuku, T., Takamasa, T., Hibiki, T.: Phase distribution characteristics of bubbly flow in mini pipes under normal and microgravity conditions. Microgravity Sci. Technol. 27, 75–96 (2015)

    Article  Google Scholar 

  • Iskandrani, A., Kojasoy, G.: Local void fraction and velocity field description in horizontal bubbly flow. Nucl. Eng. Des. 204, 117–128 (2001)

    Article  Google Scholar 

  • Joshi, J.B.: Computational flow modelling and design of bubble column reactors. Chem. Eng Sci. 56, 5893–5933 (2001)

    Article  Google Scholar 

  • Kanai, A., Miyata, H.: Direct numerical simulation of wall turbulent flows with microbubbles. Int. J. Numer. Methods Fluids 35, 593–615 (2001)

    Article  MATH  Google Scholar 

  • Kawamura, T., Kodama, Y.: Numerical simulation method to resolve interactions between bubbles and turbulence. Int. J Heat Fluid Flow 23, 627–638 (2002)

    Article  Google Scholar 

  • Kato, H., Iwashina, T., Miyanaga, M., Yamaguchi, H.: Effect of microbubbles on the structure of turbulence on a turbulent boundary layer. J. Mar. Sci. Technol. 4, 155–162 (1999)

    Article  Google Scholar 

  • Kim, J., Moin, P., Moser, R.: Turbulence statistics in fully developed turbulent channel flow at low Reynolds number. J. Fluid Mech. 177, 133–166 (1987)

    Article  MATH  Google Scholar 

  • Kitagawa, A., Hishida, K., Kodama, Y.: Flow structure of microbubble–laden turbulent channel flow measured by PIV combined with the shadow image technique. Exp. Fluids 38, 466–475 (2005)

    Article  Google Scholar 

  • Laín, S., Bröder, D., Sommerfeld, M.: Modeling hydrodynamics and turbulence in a bubble column using the Euler–Lagrange procedure. Int. J. Multiphase Flow 28, 1381–1407 (2002)

    Article  MATH  Google Scholar 

  • Lee, C., Kim, J., Choi, H.: Suboptimal control of turbulent channel flow for drag reduction. J. Fluid Mech. 358, 245–258 (1998)

    Article  MATH  Google Scholar 

  • Legendre, D., Magnaudet, J.: The lift force on a spherical bubble in a viscous linear shear flow. J. Fluid Mech. 369, 81–126 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Legendre, D., Colin, C., Fabre, J., Magnaudet, J.: Influence of gravity upon the bubble distribution in a turbulent pipe flow: Comparison between numerical simulations and experimental data. J. Chim. Phys. 96, 951–957 (1999)

    Article  Google Scholar 

  • Li, G.H., Li, X.L.: Effects of reduced gravity conditions on bubble dispersion characteristics in the bubble column. Microgravity Sci. Technol. 28, 441–450 (2016)

    Article  Google Scholar 

  • Liu, X.D., Chen, Y.P., Shi, M.H.: Influence of gravity on gas–liquid two–phase flow in horizontal pipes. Int. J. Multiphase Flow 4, 23–35 (2012)

    Article  Google Scholar 

  • Magnaudet, J., Eames, I.: The motion of high Reynolds number bubbles in inhomogeneous flows. Annu. Rev. Fluid Mech. 32, 659–708 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Mattson, M., Mahesh, K.: Simulation of bubble migration in a turbulent boundary layer. Phys. Fluid 23, 786–807 (2011)

    Article  Google Scholar 

  • Moriguchi, Y., Kato, H.: Influence of microbubble diameter and distribution on frictional resistance reduction. J. Mar. Sci. Technol. 7, 79–85 (2002)

    Article  Google Scholar 

  • Murai, Y., Fukuda, H., Oishi, Y., Kodama, Y., Yamamoto, F.: Skin friction reduction by large air bubbles in a horizontal channel flow. Int. J. Multiphase Flow 33, 147–163 (2007)

    Article  Google Scholar 

  • Oishi, Y., Murai, Y.: Horizontal turbulent channel flow interacted by a single large bubble. Exp. Ther. Fluid Sci. 55, 128–139 (2014)

    Article  Google Scholar 

  • Ortiz-Villafuerte, J., Hassan, Y.: Investigation of microbubble boundary layer using particle tracking velocimetry. ASME J. Fluid Eng. 128, 507–519 (2006)

    Article  Google Scholar 

  • Pang, M.J., Wei, J.J., Yu, B.: Numerical study of bubbly upflows in a vertical channel using the Euler–Lagrange two–way model. Chem. Eng. Sci. 65, 6215–6228 (2010)

    Article  Google Scholar 

  • Pang, M.J., Wei, J.J., Yu, B.: Numerical study on modulation of microbubbles on turbulence frictional drag in a horizontal channel. Ocean Eng. 81, 58–68 (2014)

    Article  Google Scholar 

  • Park, H.J., Tasaka, Y., Oishi, Y., Murai, Y.: Drag reduction promoted by repetitive bubble injection in turbulent channel flows. Int. J. Multiphase Flow 75, 12–25 (2015)

    Article  Google Scholar 

  • Shen, X.C., Ceccio, S.L., Perlin, M.: Influence of bubble size on micro–bubble drag reduction. Exp. Fluids 41, 415–424 (2006)

    Article  Google Scholar 

  • Su, Y.L., Zhang, M.Y., Zhu, X.R., Hu, Q.H., Geng, Y.H.: Measurements of wall shear stress in horizontal air–water bubbly flows. Flow Meas. Instrum. 21, 373–381 (2010)

    Article  Google Scholar 

  • Talley, J.D., Worosz, T., Kim, S., Buchanan J.R., Jr.: Characterization of horizontal air–water two–phase flow in a round pipe part I: Flow visualization. Int. J. Multiphase Flow 76, 212–222 (2015)

    Article  Google Scholar 

  • Takagi, S., Matsumoto, Y.: Surfactant effects on bubble motion and bubbly flows. Annu. Rev. Fluid Mech. 43, 615–636 (2011)

    Article  MATH  Google Scholar 

  • Wang, T., Li, H.X., Zhao, J.F.: Three-dimensional numerical simulation of bubble dynamics in microgravity under the influence of nonuniform electric fields. Microgravity Sci. Technol. 28, 133–142 (2016)

    Article  Google Scholar 

  • Xu, J., Maxey, M.R., Karniadakis, G.E.: Numerical simulation of turbulent drag reduction using micro–bubbles. J. Fluid Mech. 468, 271–281 (2002)

    Article  MATH  Google Scholar 

  • Yu, B., Kawaguchi, Y.: Direct numerical simulation of viscoelastic drag reducing flow: a faithful finite difference method. J. Non–Newton Fluid 116, 431–466 (2004)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support from the NSFC Fund (Nos. 51376026 and 51325603) and Jiangsu Province “Qinglan” Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Pang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, M.J., Wei, J.J. & Yu, B. Investigation on Effect of Gravity Level on Bubble Distribution and Liquid Turbulence Modification for Horizontal Channel Bubbly Flow. Microgravity Sci. Technol. 29, 313–324 (2017). https://doi.org/10.1007/s12217-017-9549-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-017-9549-6

Keywords

Navigation