Skip to main content
Log in

The Image Processing of Droplet for Evaporation Experiment in SJ-10

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

We have completed an experiment for droplet evaporation processing using Young-Laplace fitting, exponent fitting, polynomial fitting and ellipse fitting, which could be used for multiple shapes of droplets. The droplet evaporation experiment test was an important science experiment in SJ-10. In order to get the change process of the physical parameter, such as the touching edges and the droplet evaporation rate, we had gained the contour edge image of the droplet and used mathematic method to do the fitting analysis. The accuracy of the physical parameter was depended on the accuracy of the mathematic fitting. Using the original Young-Laplace fitting method could not process all the images of evaporation and liquid interface from the space experiment facility of SJ-10, especially the smaller droplet images. We could get more accurate contour fitting and result using the new method described in this article. This article proposes a complete solution, including edge detecting and contour fitting. In edge detecting, Canny detector was applied to extract droplet edge. In contour fitting, Young-Laplace fitting, exponent fitting, polynomial fitting and ellipse fitting are designed to fit the contour of droplets, which make the solution apply to all of droplets in SJ-10.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Deegan, R.D.: Pattern formation in drying drops. Phys. Rev. E 61(1), 475–485 (2000)

    Article  Google Scholar 

  • Deegan, R.D., Bakajin, O., Dupont, T.F., Huber, G., Nagel, S.R., Witten, T.A.: Capillary flow as the cause of ring stains from dried liquid drops. Nature 389(6653), 827–829 (1997)

    Article  Google Scholar 

  • Galliero, G., Bataller, H., Croccolo, F., Vermorel, R., Artola, P.-A., Rousseau, B., Vesovic, V., Bou-Ali, M., J.M.O.d.Z.a., Xu, S., Zhang, K., Montel, F.o.: Impact of thermodiffusion on the initial vertical distribution of species in hydrocarbon reservoirs. Microgravity Sci. Tec. 28, 79–86 (2016)

    Article  Google Scholar 

  • Girard, F., Antoni, M., Faure, S., Steinchen, A.: Evaporation and Marangoni driven convection in small heated water droplets. Langmuir 22(26), 11085–11091 (2006)

    Article  Google Scholar 

  • Hu, W.R., Zhao, J.F., Long, M., Zhang, X.W., Liu, Q.S., Hou, M.Y., Kang, Q., Wang, Y.R., Xu, S.H., Kong, W.J., Zhang, H., Wang, S.F., Sun, Y.Q., Hang, H.Y., Huang, Y.P., Cai, W.M., Zhao, Y., Dai, J.W., Zheng, H.Q., Duan, E.K., Wang, J.F.: Space program SJ-10 of microgravity research. Microgravity Sci. Tec. 26, 159–169 (2014)

    Article  Google Scholar 

  • Jing, J.P., Reed, J., Huang, J., Hu, X.H., Clarke, V., Edington, J., Housman, D., Anantharaman, T.S., Huff, E.J., Mishra, B., Porter, B., Shenker, A., Wolfson, E., Hiort, C., Kantor, R., Aston, C., Schwartz, D.C.: Automated high resolution optical mapping using arrayed, fluid-fixed DNA molecules. P. Natl. Acad. Sci. USA 95(14), 8046–8051 (1998)

    Article  Google Scholar 

  • Kawase, T., Sirringhaus, H., Friend, R.H., Shimoda, T.: Inkjet printed via-hole interconnections and resistors for all-polymer transistor circuits. Adv. Mater. 13(21), 1601–+ (2001)

    Article  Google Scholar 

  • Ning, Q., Zhu, Z.Q., Lu, X.T.: Determine the surface tension and contact angle of drop by image processing method. Space Sci. 28(1), 74–79 (2008)

    Google Scholar 

  • Norris, D.J., Arlinghaus, E.G., Meng, L.L., Heiny, R., Scriven, L.E.: Opaline photonic crystals: How does self-assembly work? Adv. Mater. 16(16), 1393–1399 (2004)

    Article  Google Scholar 

  • Shahidzadeh-Bonn, N., Rafai, S., Azouni, A., Bonn, D.: Evaporating droplets. J. Fluid. Mech. 549, 307–313 (2006)

    Article  Google Scholar 

  • Yu, Q., Cai, S.J., Zhu, Z.Q., Liu, Q.S., Zhou, B.H.: Droplet image feedback control system in evaporation experiment. Microgravity Sci. Tec. 22(2), 139–144 (2010)

    Article  Google Scholar 

  • Zhu, Z.Q., Wang, Y., Liu, Q.S., Xie, J.C.: Influence of bond number on behaviors of liquid drops deposited onto solid substrates. Microgravity Sci. Tec. 24(3), 181–188 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, C., Feng, Y. & Yu, Q. The Image Processing of Droplet for Evaporation Experiment in SJ-10. Microgravity Sci. Technol. 29, 221–228 (2017). https://doi.org/10.1007/s12217-017-9541-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-017-9541-1

Keywords

Navigation