Skip to main content
Log in

Response of Haloalkaliphilic Archaeon Natronococcus Jeotgali RR17 to Hypergravity

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

The survival of archaeabacteria in extreme inhabitable environments on earth that challenge organismic survival is ubiquitously known. However, the studies related to the effect of hypergravity on the growth and proliferation of archaea are unprecedented. The survival of organisms in hypergravity and rocks in addition to resistance to cosmic radiations, pressure and other extremities is imperative to study the possibilities of microbial travel between planets and endurance in hyperaccelerative forces faced during ejection of rocks from planets. The current investigation highlights the growth of an extremophilic archaeon isolated from a rocky substrate in hypergravity environment. The haloalkaliphilic archaeon, Natronococcus jeotgali RR17 was isolated from an Indian laterite rock, submerged in the Arabian sea lining Coastal Maharashtra, India. The endolithic haloarchaeon was subjected to hypergravity from 56 – 893 X gusing acceleration generated by centrifugal rotation. The cells of N. jeotgali RR17 proliferated and demonstrated good growth in hypergravity (223 X g). This is the first report on isolation of endolithic haloarchaeon N. jeotgali RR17 from an Indian laterite rock and its ability to proliferate in hypergravity. The present study demonstrates the ability of microbial life to survive and proliferate in hypergravity. Thus the inability of organismic growth in hypergravity may no longer be a limitation for astrobiology studies related to habitability of substellar objects, brown dwarfs and other planetary bodies in the universe besides planet earth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbes, M., Baati, H., Guermazi, S., Messina, A., Santulli, A., Gharsallah, N., et al.: Biological properties of carotenoids extracted from Halobacterium halobium isolated from a Tunisian solar saltern. BMC Comple. Altern. M 13, 255–262 (2013). doi:10.1186/1472-6882-13-255

  • Barnes, R., Heller, R.: Habitable planets around white and brown dwarfs: the perils of a cooling primary. Astrobiology 13(3), 279–291 (2013). doi:10.1089/ast.2012.0867

  • Bauer, A.W., Kirby, W.M., Sherris, J.C., Turck, M.: Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Path. 45, 493–6 (1966)

    Google Scholar 

  • Benoit, M.R., Klaus, D.M.: Microgravity, bacteria, and the influence of motility. Adv. Space Res. 39, 1225–1232 (2007)

    Article  Google Scholar 

  • Bouloc, P., D’Ari, R.: Escherichia coli metabolism in space. J. Gen. Microbiol. 137, 2839–2843 (1991)

    Article  Google Scholar 

  • Brown, R.B., Klaus, D., Todd, P.: Effects of space flight, clinorotation and centrifugation on the substrate utilization efficiency of E, coli. Microgravity Sci. Tec. 13, 24–29 (2002)

    Article  Google Scholar 

  • Carillo, P., Mastrolonardo, G., Nacca, F., Parisi, D., Verlotta, A., Fuggi, A.: Nitrogen metabolism in durum wheat under salinity: accumulation of proline and glycine betaine. Funct. Plant Biol. 35, 412–426 (2008)

    Article  Google Scholar 

  • Clinical Laboratory Standards Institute: Performance standards for antimicrobial disc susceptibility tests, Twenty second Informational supplement. Tech. Rep. M100-S22. CLSI. Wayne. PA.USA. 32.3 (2012)

  • Clinical Laboratory Standards Institute: Performance standards for antimicrobial disc susceptibility tests, Twenty fourth Informational supplement. Tech. Rep. M100-S24. CLSI. Wayne. PA. USA, vol. 34 (2014)

  • Crits-Christoph, A., Gelsinger, D.R., Ma, B., Wierzchos, J., Ravel, J., Davila, A., Casero, M.C., DiRuggiero, J.: Functional interactions of archaea, bacteria and viruses in a hypersaline endolithic community. Environ Microbiol. doi:10.1111/1462-2920.13259 (2016a)

  • Crits-Christoph, A., Robinson, C.K., Ma, B., Ravel, J., Wierzchos, J., Ascaso, C., Artieda, O., Souza-Egipsy, V., Casero, M.C., DiRuggiero, J.: Phylogenetic and functional substrate specificity for endolithic microbial communities in hyper-arid environments. Front Microbiol. 7, 301 (2016b). doi:10.3389/fmicb.2016.00301.

  • Damm, T.B., Franco-Obregón, A, Egli, M.: Gravitational force modulates G2/ M phase exit in mechanically unloaded myoblasts. Cell Cycle 112, 3001–3012 (2013). doi:10.4161/cc.26029

  • DasSarma, S.: Extreme halophiles are models for astrobiology. Microbe 1(3), 120–126 (2006)

    Google Scholar 

  • Deguchi, S., Hirokazu, S., Mikiko, T., Sada-atsu, M., Corkeryc, R.W., Susumu, I., Koki, H.: Microbial growth at hyperaccelerations up to 403,627 × g. PNAS 108, 7997–8002 (2011)

    Article  Google Scholar 

  • Denner, E.M.B., McGenity, T.J., Busse, H., Wanner, G., Grant, W.D., Stan-Lotter, H.: Halococcus sulfodinae sp, nov, an archaeal isolate from an Austrian salt mine. Int. J. Syst. Bacteriol. 44, 774–780 (1994)

    Article  Google Scholar 

  • Dornmayr-Pfaffenhuemer, M., Legat, A., Schwimbersky, K., Fendrihan, S., Stan-Lotter, H.: Response of Haloarchaea to simulated microgravity. Astrobiology 11, 199–205 (2011)

    Article  Google Scholar 

  • Fendrihan, S., Legat, A., Pfaffenhuemer, M., Gruber, C., Weidler, G., Gerbl, F., et al.: Extremely halophilic archaea and the issue of long- term microbial survival. Rev. Environ. Sci. Biotechnol. 15, 203–218 (2006)

    Article  Google Scholar 

  • Galinski, E.A., Trüper, H G: Microbial behaviour in salt stressed ecosystems. FEMS Microbiol. Rev. 15, 95–108 (1994)

    Article  Google Scholar 

  • Genchi, G., Cialdai, F., Monici, M., Mazzolai, B., Mattoli, V., Ciofani, G.: Hypergravity stimulation enhances PC12 neuron-like cell differentiation. BioMed. Res. Int., 748121 (2015). doi:10.1155/2015/748121

  • Govekar, R., Kawle, K., Thomas, R., Advani, S., Sheena, P.V., Zingde, S.: Eryptotic phenotype in chronic myeloid leukemia: contribution of neutrophilic cathepsin G. Anemia (2012). doi:10.1155/2012/659303

  • Hershkovitz, N., Oren, A., Cohen, Y.: Accumulation of trehalose and sucrose in cyanobacteria exposed to matric water stress. Appl. Environ. Microbiol. 57, 645–648 (1991)

    Google Scholar 

  • Jagtap, S.S., Awhad, R.B., Santosh, B., Vidyasagar, P.B.: Effects of clinorotation on growth and chlorophyll content of rice seeds. Microgravity Sci. Tec. 23, 41–48 (2011)

    Article  Google Scholar 

  • Jin, Y., Wang, M., Lin, S., Guo, Y., Liu, J., Yin, Y.: Optimization of extraction parameters for trehalose from beer waste brewing yeast treated by high-intensity pulsed electric fields (PEF). Afr. J. Biotechnol. 10 (82), 19144–19152 (2011)

    Google Scholar 

  • Kato, Y., Mogami, Y., Baba, S.A.: Responses to hypergravity in proliferation of Paramecium tetraurelia. Zoology Sci. 20, 1373–1380 (2003)

    Article  Google Scholar 

  • Kim, O.S., Cho, Y.J., Lee, K., Yoon, S.H., Kim, M., Na, H., Park, S.C., Jeaon, Y.S., Lee, J.H., Yi, H., Won, S., Chun, J.: Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62, 716–721 (2012)

    Article  Google Scholar 

  • Koval, S.F., Sprott, G.D.: Cell fractionation. In: Reddy, CA et al. (eds.) Methods for General and Molecular Microbiology Washington, DC: ASM Press, pp. 108–137 (2007)

  • Kumar, V., Khare, T.: Individual and additive effects of Na+ and Cl ions on rice under salinity stress. Arch. Agron. Soil. Sci. 61(3), 381–395 (2015)

    Article  Google Scholar 

  • Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970)

    Article  Google Scholar 

  • Leggett, S.K., Cushing, M.C., Saumon, D., Marley, M.S., Roellig, T.L., Warren, S.J., et al.: The physical properties of four ∼600 K T dwarfs. Astrophys J. 695, 1517–1526 (2009)

    Article  Google Scholar 

  • Mancinelli, R., White, M.R., Rothschild, L.J.: Biopan survival I: exposure of the osmophiles Synechococcus sp (Nägeli) and Haloarcula sp. to the space environment. Adv. Space Res. 22, 327– 334 (1998)

    Article  Google Scholar 

  • Mastrapa, R.M.E., Glanzberg, H., Head, J.N., Melosh, H.J., Nicholson, W.L.: Survival of bacteria exposed to extreme acceleration: implications for panspermia. Earth Planet Sci. Lett. 189, 1–8 (2001)

    Article  Google Scholar 

  • Nicholson, W.L., Munakata, N., Horneck, G., Melosh, H.J., Setlow, P.: Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol. Mol. Biol. Rev. 64, 548–572 (2000)

    Article  Google Scholar 

  • Norton, C.F., McGenity, T.J., Grant, W.D.: Archaeal halophiles (halobacteria) from two British salt mines. J. Gen. Microbiol. 139, 1077–1081 (1993)

    Article  Google Scholar 

  • Oren, A., Ventosa, A., Grant, W.D.: Proposed minimal standards for description of new taxa in the order Halobacteriales. Int. J. Syst. Bacteriol. 47, 233–238 (1997)

    Article  Google Scholar 

  • Oren, A.: Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Systems 4, 2 (2008). doi:10.1186/1746-1448-4-2

  • Otte, K., Frohlich, T., Arnold, G., Laforsh, C.: Proteomic analysis of Daphnia magna hints at molecular pathways involved in defensive plastic responses. BMC Genomics 15, 306 (2014). doi:10.1186/1471-2164-15-306

  • Purevdorj-Gage, B., Sheehan, K.B., Hyman, L.E.: Effects of low- shear modeled microgravity on cell function, gene expression, and phenotype in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 72, 4569–4575 (2006)

    Article  Google Scholar 

  • Roh, S.W., Nam, Y.D., Chang, H.W., Sung, Y., Kim, K.H., Lee, H.J., Oh, H.M., Bae, J.W.: Natronococcus jeotgali sp. Nov. a halophilic archaeon isolated from shrimp jeotgal, a traditional fermented seafood from Korea. Int. J. Syst. Evol. Microbiol. 57, 2129–2131 (2007)

    Article  Google Scholar 

  • Rothschild, L.J., Mancinelli, R.L.: Life in extreme environments. Nature 409, 1092–1101 (2001)

    Article  Google Scholar 

  • Salgaonkar, B., Das, D., Braganca, J.: Resistance of extremely halophilic archaea to zinc and zinc oxide nanoparticles. Appl. Nanosci. 6, 251–258 (2015)

    Article  Google Scholar 

  • Schellmann, W.: Considerations on the definition and classification of Laterites. Lateritisation processes, pp 1–10. Oxford and IBH Publishing Co, New Delhi (1981)

    Google Scholar 

  • Sehgal, S.N., Gibbons, N.E.: Effect of some metal ions on the growth of Halobacterium cutirubrum. Can. J. Microbiol. 6, 165–169 (1960)

    Article  Google Scholar 

  • Sharma, A., Dhar, S., Prakash, O., Vemuluri, V.R., Thitte, V., Shouche, Y.: Description of Domibacillus indicus sp. Nov. isolated from ocean sediments of Lakshadweep and emended description of the genus Domibacillus. Int. J. Syst. Evol. Microbiol. 64, 3010–3015 (2014)

    Article  Google Scholar 

  • Springer, B., Kidan, Y.G., Prammananan, T., Ellrott, K., Böttger, EC, Sander, P.: Mechanisms of streptomycin resistance: selection of mutations in the 16S rRNA gene conferring resistance. Antimicrob. Agents Chemother. 45(10), 2877–2884 (2001). doi:10.1128/AAC.45.10.2877-2884.2001

  • Thombre, R.S., Oke, R.O.: Study of stress proteins induced by temperature stress in extremely halophilic archaea, Haloferax mediterranei RT18. Int. J. Curr. Microbiol. App. Sci. 2, 199–209 (2015)

    Google Scholar 

  • Thombre, R., Shinde, V., Oke, R., Dhar, S., Shouche, Y.: Biology and survival of extremely halophilic archaeon Haloarcula marismortui RR12 isolated from Mumbai salterns, India in response to salinity stress. Sci. Rep. 6, 25642 (2016a). doi:10.1038/srep25642

  • Thombre, R.S., Shinde, V., Thaiparambil, E., Zende, S., Mehta, S.: Antimicrobial activity and mechanism of inhibition of silver nanoparticles against extreme Halophilic archaea. Front. Microbiol. 7, 1424 (2016b). doi:10.3389/fmicb.2016.01424

  • Tindall, B.J., Ross, H.N.M., Grant, W.D.: Natronobacterium gen. nov. and Natronococcus gen. nov. two new genera of Haloalkaliphilic archaebacteria. Syst. Appl. Microbiol. 5, 41– 57 (1984)

    Article  Google Scholar 

  • Trotter, B., Otte, K., Schoppmann, K., Hemmersbach, R., Fröhlich, T, Arnold, G., et al.: The influence of simulated microgravity on the proteome of Daphnia magna. npj Microgravity 1, 15016 (2015). doi:10.1038/npjmgrav.2015.16

  • Vadagbalkar, S.K.: Study of laterites around Talmod, Maharashtra state. India International Science Journal 1(2), 10–14 (2014)

    Google Scholar 

  • Widdowson, M., Cox, K.G.: Uplift and erosional history of the Deccan Traps, India: evidence from laterites and drainage patterns of the Western Ghats and Konkan Coast. Earth Planet Sci. Lett. 137, 57–69 (1996)

    Article  Google Scholar 

  • Wilson, J.W., Ott, C.M., HönerzuBentrup, K., Ramamurthy, R., Quick, L., Porwollik, S., et al.: Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. PNAS 104, 16299–16304 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from Indian Space Research Organization (ISRO) –Space Technology Cell-University of Pune (STC-UoP), Grant no. 140 to RT. VS thanks ISRO for Junior research fellowship. We thank Dr. P.P. Kanekar for suggestions regarding sampling site and sampling and Ms. Oke R for biochemical characterization. We thank Principal, Modern College, Shivajinagar, Pune for providing necessary facilities for the work and Prof. Dr. P.D. Sabale, Dept. of Archaeology, Deccan College, Pune for help in identification of rock.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca S. Thombre.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Ethical Approval

This article does not contain any studies conducted with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 289 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thombre, R.S., Bhalerao, A.R., Shinde, V.D. et al. Response of Haloalkaliphilic Archaeon Natronococcus Jeotgali RR17 to Hypergravity. Microgravity Sci. Technol. 29, 191–200 (2017). https://doi.org/10.1007/s12217-017-9538-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-017-9538-9

Keywords

Navigation