An Experimental and Theoretical Approach to Optimize a Three-Dimensional Clinostat for Life Science Experiments

Abstract

Gravity affects all biological systems, and various types of platforms have been developed to mimic microgravity on the Earth’;s surface. A three-dimensional clinostat (3D clinostat) has been constructed to reduce the directionality of gravitation. In this report, we attempted to optimize a 3D clinostat for a life science experiment. Since a 3D clinostat is equipped with two motors, we fixed the angular velocity of one (primary) motor and varied it for the other (secondary) motor. In this condition, each motor ran constantly and continuously in one direction during the experiment. We monitored the direction of the normal vector using a 3D acceleration sensor, and also performed a computer simulation for comparison with the experimental data. To determine the optimal revolution for our life science experiment (i.e., a revolution yielding the strongest effects), we examined the promoter activity of two genes that were reported to be affected by microgravity. We found that the ratio of velocity of 4:1.8 (0.55) was optimal for our biological system. Our results indicate that changes of the revolutions of a 3D clinostat have a direct impact on the result and furthermore that the revolutions of the two motors have to be separately adjusted in order to guarantee an optimal simulation of microgravity.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Becker, J.L., Souza, G.R.: Using space-based investigations to inform cancer research on Earth. Nat. Rev. Cancer 13(5), 315–327 (2013). doi:10.1038/nrc3507

    Article  Google Scholar 

  2. Borst, A.G., van Loon, J.J.W.A.: Technology and developments for the random positioning machine. RPM Microgravity Sci. Technol. 21, 287–292 (2009)

  3. Brungs, S., Egli, M., Wuest, S.L., Christianen, P.C.M., van Loon, J.W.A., Anh, T.J.N., Hemmersbach, R.: Facilities for simulation of microgravity in the ESA ground-based facility programme. Microgravity Sci. Technol. 28(3), 191–203 (2016)

  4. Chae, M., Kim, K., Park, S.M., Jang, I.S., Seo, T., Kim, D.M., Kim, I.C., Lee, J.H., Park, J.: IRF-2 regulates NF-kappaB activity by modulating the subcellular localization of NF-kappaB. Biochem. Biophys. Res. Commun. 370(3), 519–524 (2008). doi:10.1016/j.bbrc.2008.03.136 S0006-291X(08)00630-X [pii]

    Article  Google Scholar 

  5. Coinu, R., Chiaviello, A., Galleri, G., Franconi, F., Crescenzi, E., Palumbo, G.: Exposure to modeled microgravity induces metabolic idleness in malignant human MCF-7 and normal murine VSMC cells. FEBS Lett. 580(10), 2465–2470 (2006). S0014-5793(06)00405-4 [pii] 10.1016/j.febslet.2006.03.078

    Article  Google Scholar 

  6. Cotrupi, S., Ranzani, D., Maier, J.A.: Impact of modeled microgravity on microvascular endothelial cells. Biochim. Biophys. Acta 1746(2), 163–168 (2005). S0167-4889(05)00217-X [pii] 10.1016/j.bbamcr.2005.10.002

    Article  Google Scholar 

  7. Grimm, D., Bauer, J., Kossmehl, P., Shakibaei, M., Schoberger, J., Pickenhahn, H., Schulze-Tanzil, G., Vetter, R., Eilles, C., Paul, M., Cogoli, A.: Simulated microgravity alters differentiation and increases apoptosis in human follicular thyroid carcinoma cells. FASEB J. 16(6), 604–606 (2002)

    Google Scholar 

  8. Hammer, B.E., Kidder, L.S., Williams, P.C., Xu, W.W.: Magnetic Levitation of MC3T3 Osteoblast Cells as a Ground-Based Simulation of Microgravity. Microgravity Sci. Technol. 21(4), 311–318 (2009). doi:10.1007/s12217-008-9092-6

    Article  Google Scholar 

  9. Hemmersbach, R., Simon, A., Waßer, K., Hauslage, J., Christianen, P. C., Albers, P. W., Lebert, M., Richter, P., Alt, W., Anken, R.: Impact of a high magnetic field on the orientation of gravitactic unicellular organisms–a critical consideration about the application of magnetic fields to mimic functional weightlessness. Astrobiology 14(3), 205–215 (2014). doi:10.1089/ast.2013.1085

    Article  Google Scholar 

  10. Herranz, R., Anken, R., Boonstra, J., Braun, M., Christianen, P.C., De Geest, M., Hauslage, J., Hilbig, R., Hill, R.J., Lebert, M., Medina, F.J., Vagt, N., Ullrich, O., Van Loon, J.J., Hemmersbach, R.: Ground-based facilities for simulation of microgravity: organism-specific recommendations for their use, and recommended terminology. Astrobiology 13(1), 1–17 (2013). doi:10.1089/ast.2012.0876

  11. Hoson, T., Kamisaka, S., Masuda, Y., Yamashita, H.: Changes in plant growth processes under microgravity conditons simulated by a three dimensional clinostat. Bot. Mag. 105(1), 53–70 (1992)

    Article  Google Scholar 

  12. Kang, C.Y., Zou, L., Yuan, M., Wang, Y., Li, T.Z., Zhang, Y., Wang, J.F., Li, Y., Deng, X.W., Liu, C.T.: Impact of simulated microgravity on microvascular endothelial cell apoptosis. Eur. J. Appl. Physiol. 111(9), 2131–2138 (2011). doi:10.1007/s00421-011-1844-0

    Article  Google Scholar 

  13. Morey-Holton, E.R., Globus, R.K.: Hindlimb unloading rodent model: technical aspects. J. Appl. Physiol. (1985) 92(4), 1367–1377 (2002). doi:10.1152/japplphysiol.00969.2001

    Article  Google Scholar 

  14. Park, J., Kim, K., Lee, E.J., Seo, Y.J., Lim, S.N., Park, K., Rho, S.B., Lee, S.H., Lee, J.H.: Elevated level of SUMOylated IRF-1 in tumor cells interferes with IRF-1-mediated apoptosis. Proc. Natl. Acad. Sci. USA 104(43), 17028–17033 (2007). 0609852104 [pii] 10.1073/pnas.0609852104

    Article  Google Scholar 

  15. Russomano, T., Cardoso, R., Falcao, F., Dalmarco, G., C, V.D.S., L, F.D.S., D, G.d.A., Dos Santos, M., Martinelli, L., Motta, J., Forraz, N., McGuckin, C.: Development and validation of a 3d clinostat for the study of cells during microgravity simulation. conference proceedings: Annual international conference of the IEEE engineering in medicine and biology society. IEEE Eng. Med. Biol. Soc. Ann. Conf. 1, 564–566 (2005). doi:10.1109/IEMBS.2005.1616474

    Google Scholar 

  16. Ryu, H.W., Choi, S.H., Namkoong, S., Jang, I.S., Seo, D.H., Choi, I., Kim, H.S., Park, J.: Simulated microgravity contributes to autophagy induction by regulating AMP-activated protein kinase. DNA Cell Biol. 33(3), 128–135 (2014). doi:10.1089/dna.2013.2089

    Article  Google Scholar 

  17. Takeda, M., Magaki, T., Okazaki, T., Kawahara, Y., Manabe, T., Yuge, L., Kurisu, K.: Effects of simulated microgravity on proliferation and chemosensitivity in Malignant glioma cells. Neurosci Lett. 463(1), 54–59 (2009). doi:10.1016/j.neulet.2009.07.045

    Article  Google Scholar 

  18. Tamma, R., Colaianni, G., Camerino, C., Di Benedetto, A., Greco, G., Strippoli, M., Vergari, R., Grano, A., Mancini, L., Mori, G., Colucci, S., Grano, M., Zallone, A.: Microgravity during spaceflight directly affects in vitro osteoclastogenesis and bone resorption. FASEB J 23(8), 2549–2554 (2009). doi:10.1096/fj.08-127951 fj.08-127951 [pii]

    Article  Google Scholar 

  19. Thiel, C.S., Paulsen, K., Bradacs, G., Lust, K., Tauber, S., Dumrese, C., Hilliger, A., Schoppmann, K., Biskup, J., Golz, N., Sang, C., Ziegler, U., Grote, K.H., Zipp, F., Zhuang, F., Engelmann, F., Hemmersbach, R., Cogoli, A., Ullrich, O.: Rapid alterations of cell cycle control proteins in human T lymphocytes in microgravity. Cell Commun. Signal 10(1), 1 (2012). doi:10.1186/1478-811X-10-1 1478-811X-10-1 [pii]

    Article  Google Scholar 

  20. Vandenburgh, H., Chromiak, J., Shansky, J., Del Tatto, M., Lemaire, J.: Space travel directly induces skeletal muscle atrophy. FASEB J. 13(9), 1031–1038 (1999)

    Google Scholar 

  21. Yuge, L., Hide, I., Kumagai, T., Kumei, Y., Takeda, S., Kanno, M., Sugiyama, M., Kataoka, K.: Cell differentiation and p38(MAPK) cascade are inhibited in human osteoblasts cultured in a three-dimensional clinostat. In vitro cellular & developmental biology. Animal 39(1-2), 89–97 (2003). doi:10.1290/1543-706X(2003)039(0089:CDAPCA)2.0.CO;2

    Google Scholar 

  22. Yuge, L., Kajiume, T., Tahara, H., Kawahara, Y., Umeda, C., Yoshimoto, R., Wu, S.L., Yamaoka, K., Asashima, M., Kataoka, K., Ide, T.: Microgravity potentiates stem cell proliferation while sustaining the capability of differentiation. Stem Cells Dev. 15(6), 921–929 (2006). doi:10.1089/scd.2006.15.921

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Leading Space Core Technology Development Program through the National Research Foundation funded by the Ministry of Science, ICT & Future Planning (2013M1A3A3A02042433) and by the Leading Foreign Research Institute Recruitment Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2010-00757).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Hyoungsoon Kim or Junsoo Park.

Additional information

Sun Myong Kim, Hyunju Kim and Dongmin Yang are contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, S.M., Kim, H., Yang, D. et al. An Experimental and Theoretical Approach to Optimize a Three-Dimensional Clinostat for Life Science Experiments. Microgravity Sci. Technol. 29, 97–106 (2017). https://doi.org/10.1007/s12217-016-9529-2

Download citation

Keywords

  • Microgravity
  • Clinostat
  • Optimization
  • Life science