Skip to main content

Miniaturized Lab System for Future Cold Atom Experiments in Microgravity

Abstract

We present the technical realization of a compact system for performing experiments with cold 87Rb and 39K atoms in microgravity in the future. The whole system fits into a capsule to be used in the drop tower Bremen. One of the advantages of a microgravity environment is long time evolution of atomic clouds which yields higher sensitivities in atom interferometer measurements. We give a full description of the system containing an experimental chamber with ultra-high vacuum conditions, miniaturized laser systems, a high-power thulium-doped fiber laser, the electronics and the power management. In a two-stage magneto-optical trap atoms should be cooled to the low μK regime. The thulium-doped fiber laser will create an optical dipole trap which will allow further cooling to sub- μK temperatures. The presented system fulfills the demanding requirements on size and power management for cold atom experiments on a microgravity platform, especially with respect to the use of an optical dipole trap. A first test in microgravity, including the creation of a cold Rb ensemble, shows the functionality of the system.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  • Aguilera, D.N., et al.: STE-QUEST–test of the universality 587 of free fall using cold atom interferometry. Classical Quantum Gravity 115010, 31 (2014)

    Google Scholar 

  • Altschul, B., et al.: Quantum tests of the Einstein Equivalence Principle with the STE-QUEST space mission. Adv. Space Research 55, 501–524 (2015)

    Article  Google Scholar 

  • Bouchendira, R., Cladé, P., Guellati-Khélifa, S., Nez, F., Biraben, F.: State of the art in the determination of the fine structure constant: test of quantum electrodynamics and determination of h/mu. Annalen der Physik 525, 484–492 (2013)

    Article  Google Scholar 

  • Clairon, A., Salomon, C., Guellati, S., Phillips, W.D.: Ramsey resonance in a zacharias fountain. Europhys. Lett. 16, 165–170 (1991)

    Article  Google Scholar 

  • Clément, J.-F., Brantut, J.-P., Robert-de-Saint-Vincent, M., Nyman, R.A., Aspect, A., Bourdel, T., Bouyer, P.: All-optical runaway evaporation to Bose-Einstein condensation. Phys. Rev. A 061406, 79 (2009)

    Google Scholar 

  • Davisson, C., Germer, L.H.: Diffraction of electrons by a crystal of nickel. Phys. Rev. 30, 705 (1927)

    Article  Google Scholar 

  • de Broglie, L.: A tentative theory of light quanta. Phil. Mag. 47, 446 (1924)

    Article  Google Scholar 

  • Dieckmann, K., Spreeuw, R.J.C., Weidemüller, M., Walraven, J.T.M.: Two-dimensional magneto-optical trap as a source of slow atoms. Phys. Rev. A 58, 3891 (1998)

    Article  Google Scholar 

  • Fattori, M., D’Errico, C., Roati, G., Zaccanti, M., Jona-Lasinio, M., Modugno, M., Inguscio, M., Modugno, G.: Atom interferometry with a weakly interacting Bose-Einstein condensate. Phys. Rev. Lett. 080405, 100 (2008)

    Google Scholar 

  • Geiger, R., et al.: Detecting inertial effects with airborne matter-wave interferometry. Nat. Commun. 2, 474 (2011)

    Article  Google Scholar 

  • Gouet, J.L.E, Mehlstübler, T.E., Kim, J., Merlet, S., Clairon, A., Landragin, A., Pereira Dos Santos, F.: Limits to the sensitivity of a low noise compact atomic gravimeter. Appl. Phys. B 92, 133–144 (2008)

    Article  Google Scholar 

  • Han, D.J., DePue, M.T., Weiss, D.S.: Loading and compressing Cs atoms in a very far-off-resonant light trap. Phys. Rev. A 023405, 63 (2001)

    Google Scholar 

  • Jönsson, C.: Elektroneninterferenzen an mehreren künstlich hergestellten Feinspalten. Zeitschrift für Physik 161, 454 (1961)

    Article  Google Scholar 

  • Kasevich, M.A., Chu, S.: Measurement of the gravitational acceleration of an atom with a Light-Pulse atom interferometer. Appl. Phys. B 54, 321–332 (1992)

    Article  Google Scholar 

  • Könemann, T., et al.: A freely falling magneto-optical trap drop tower experiment. Appl. Phys. B 89, 431–438 (2007)

    Article  Google Scholar 

  • Lamporesi, G., Bertoldi, A., Cacciapuoti, L., Prevedelli, M., Tino, G.M.: Determination of the Newtonian gravitational constant using atom interferometry. Phys. Rev. Lett. 050801, 100 (2008)

    Google Scholar 

  • Landini, M., Roy, S., Carcagní, L., Trypogeorgos, D., Fattori, M., Inguscio, M., Modugno, G.: Sub-Doppler laser cooling of potassium atoms. Phys. Rev. A 043432, 84 (2011)

    Google Scholar 

  • Luvsandamdin, E., Kürbis, Ch., Schiemangk, M., Sahm, A., Wicht, A., Peters, A., Erbert, G., Tränkle, G.: Micro-integrated extended cavity diode lasers for precision potassium spectroscopy in space. Opt. Express 22, 7790 (2014)

    Article  Google Scholar 

  • Müntinga, H., et al.: Interferometry with bose-einstein condensates in microgravity. Phys. Rev. Lett. 093602, 110 (2013)

    Google Scholar 

  • Riehle, F., Kisters, T., Witte, A., Helmcke, J., Bordé, C.J.: Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer. Phys. Rev. Lett. 67, 177 (1991)

    Article  Google Scholar 

  • Roati, G., Zaccanti, M., D’Errico, C., Catani, J., Modugno, M., Simoni, A., Inguscio, M., Modugno, G.: K 39 Bose-Einstein condensate with tunable interactions. Phys. Rev. Lett. 010403, 99 (2007)

    Google Scholar 

  • Schiemangk, M., Lampmann, K., Dinkelaker, A., Kohfeldt, A., Krutzik, M., Kürbis, C., Sahm, A., SpieSSberger, S., Wicht, A., Erbert, G., Tränkle, G., Peters, A.: High-power, micro-integrated diode laser modules at 767 and 780 nm for portable quantum gas experiments. Appl. Opt. 54, 5332–5338 (2015)

    Article  Google Scholar 

  • Schlippert, D., Hartwig, J., Albers, H., Richardson, L.L., Schubert, C., Roura, A., Schleich, W.P., Ertmer, W., Rasel, E.M.: Quantum test of the universality of free fall. Phys. Rev. Lett. 203002, 112 (2014)

    Google Scholar 

  • Seidel, S.T., Gaaloul, N., Rasel, E.M.: MAIUS - A Rocket-Born test of an atom interferometer with a Chip-Based atom laser, vol. 2012, p 801 (2013)

  • Wicht, A., Hensley, J.M., Sarajlic, E., Chu, S.: A preliminary measurement of the fine structure constant based on atom interferometry. Phys. Scr. T102, 82–88 (2002)

    Article  Google Scholar 

  • Zaiser, M., Hartwig, J., Schlippert, D., Velte, U., Winter, N., Lebedev, V., Ertmer, W., Rasel, E.M.: Simple method for generating Bose-Einstein condensates in a weak hybrid trap. Phys. Rev. A 035601, 83 (2011)

    Google Scholar 

  • Zhou, L., Long, S., Tang, B., Chen, X., Gao, F., Peng, W., Duan, W., Zhong, J., Xiong, Z., Wang, J., Zhang, Y., Zhan, M.: Test of Equivalence Principle at 10−8 Level by a Dual-species Double-diffraction Raman Atom Interferometer. Phys. Rev. Lett. 013004, 115 (2015)

    Google Scholar 

Download references

Acknowledgments

We acknowledge support by the German Space Agency DLR with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) under grant number DLR 50 WM 1142.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sascha Kulas.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kulas, S., Vogt, C., Resch, A. et al. Miniaturized Lab System for Future Cold Atom Experiments in Microgravity. Microgravity Sci. Technol. 29, 37–48 (2017). https://doi.org/10.1007/s12217-016-9524-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-016-9524-7

Keywords

  • Atom interferometry
  • Microgravity
  • Equivalence principle
  • Fundamental physics