Skip to main content
Log in

Shadowgraph Analysis of Non-equilibrium Fluctuations for Measuring Transport Properties in Microgravity in the GRADFLEX Experiment

  • ORIGINAL ARTICLE
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

In a fluid system driven out of equilibrium by the presence of a gradient, fluctuations become long-ranged and their intensity diverges at large spatial scales. This divergence is prevented by vertical confinement and, in a stable configuration, by gravity. Gravity and confinement also affect the dynamics of non-equilibrium fluctuations (NEFs). In fact, small wavelength fluctuations decay diffusively, while the decay of long wavelength ones is either dominated by buoyancy or by confinement. In normal gravity, from the analysis of the dynamics one can extract the diffusion coefficients as well as other transport properties. For example, in a thermodiffusion experiment one can measure the Soret coefficient. Under microgravity, the relaxation of fluctuations occurs by diffusion only and this prevents the determination of the Soret coefficient of a binary mixture from the study of the dynamics. In this work we propose an innovative self-referencing optical method for the determination of the thermal diffusion ratio of a binary mixture that does not require previous knowledge of the temperature difference applied to the sample. The method relies on the determination of the ratio between the mean squared amplitude of concentration and temperature fluctuations. We investigate data from the GRADFLEX experiment, an experiment flown onboard the Russian satellite FOTON M3 in 2007. The investigated sample is a suspension of polystyrene polymer chains (MW=9,100g/mol, concentration 1.8wt %) in toluene, stressed by different temperature gradients. The use of a quantitative shadowgraph technique allows to perform measurements in the absence of delicate alignment and calibration procedures. The statics of the concentration and temperature NEFs are obtained and their ratio is computed. At large wave vectors the ratio becomes constant and is shown to be proportional to the thermal diffusion ratio of the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Balboa Usabiaga, F., et al.: Staggered schemes for fluctuating hydrodynamics. SIAM J. Multiscale Model. Simul. 10, 1369–1408 (2012)

    Article  MathSciNet  Google Scholar 

  • Barmatz, M., Hahn, I., Lipa, J.A., Duncan, R.V.: Critical phenomena in microgravity: past, present and future. Rev. Mod. Phys. 79, 1–52 (2007)

    Article  Google Scholar 

  • Beysens, D.: Critical point in space: a quest for universality. Microgravity Sci Tec. 26, 201–218 (2014)

    Article  Google Scholar 

  • Brogioli, D., Vailati, A., Giglio, M.: Universal behavior of nonequilibrium fluctuations in free diffusion processes. Phys. Rev. E 61, R1 (2000)

    Article  Google Scholar 

  • Cerbino, R., Trappe, V.: Differential dynamic microscopy: probing wave vector dependent dynamics with a microscope. Phys. Rev. Lett. 100, 188102 (2008)

    Article  Google Scholar 

  • Cerbino, R., Vailati, A.: Near-field scattering techniques: Novel instrumentation and results from time and spatially resolved investigations of soft matter systems. Curr. Opin. Colloid Interface Sci. 14, 416 (2009)

    Article  Google Scholar 

  • Cerbino, R., Sun, Y., Donev, A., Vailati, A.: Dynamic scaling for the growth of non-equilibrium fluctuations during thermophoretic diffusion in microgravity. Sci. Rep. 5, 14486 (2015)

    Article  Google Scholar 

  • Croccolo, F., Brogioli, D., Vailati, A., Giglio, M., Cannell, D.S.: Use of dynamic schlieren interferometry to study fluctuations during free diffusion. App. Opt. 45, 2166 (2006)

    Article  Google Scholar 

  • Croccolo, F., Brogioli, D., Vailati, A., Giglio, M., Cannell, D.S.: Nondiffusive decay of gradient-driven fluctuations in a free-diffusion process. Phys. Rev. E 76, 041112 (2007)

    Article  Google Scholar 

  • Croccolo, F., Bataller, H., Scheffold, F.: A light scattering study of non equilibrium fluctuations in liquid mixtures to measure the Soret and mass diffusion coefficient. J. Chem. Phys. 137, 234202 (2012)

    Article  Google Scholar 

  • Croccolo, F., Brogioli, D.: Quantitative Fourier analysis of schlieren masks: the transition from shadowgraph to schlieren. App. Opt. 50, 3419 (2011)

    Article  Google Scholar 

  • de Groot, S.R., Mazur, P.: Nonequilibrium Thermodynamics. Dover, New York (1984)

    MATH  Google Scholar 

  • Delong, S., Sun, Y., Griffith, B.E., Vanden-Eijnden, E., Donev, A.: Multiscale temporal integrators for fluctuating hydrodynamics. Phys. Rev. E 90, 063312 (2014)

    Article  Google Scholar 

  • De Lucas, L.J., et al.: Protein crystal growth in microgravity. Science 246, 651–654 (1989)

    Article  Google Scholar 

  • Donev, A., de la Fuente, A., Bell, J.B., Garcia, A.L.: Diffusive transport enhanced by thermal velocity fluctuations. Phys. Rev. Lett. 106, 204501 (2011)

    Article  Google Scholar 

  • Donev, A., Fai, T.G., Vanden-Eijnden, E.: A reversible mesoscopic model of diffusion in liquids: from giant fluctuations to Fick’s law. J. Stat. Mech. P04004, 1–39 (2014)

    Google Scholar 

  • Giavazzi, F., Cerbino, R.: Digital Fourier microscopy for soft matter dynamics. J. Opt. 16, 083001 (2014)

    Article  Google Scholar 

  • Giraudet, C., Bataller, H., Croccolo, F.: High-pressure mass transport properties measured by dynamic near-field scattering of non-equilibrium fluctuations. Eur. Phys. J. E 37, 107 (2014)

    Article  Google Scholar 

  • Giraudet, C., Bataller, H., Sun, Y., Donev, A., Ortiz de Zarate, J.M., Croccolo, F.: Slowing-down of non-equilibrium concentration fluctuations in confinement. Europhys. Lett. 111, 60013 (2015)

    Article  Google Scholar 

  • Hegseth, J.J., Oprisan, A., Garrabos, Y., Beysens, D.: Imaging critical fluctuations of pure fluids and binary mixtures. Phys. Rev. E 90, 022127 (2014)

    Article  Google Scholar 

  • http://www.esa.int/spaceinvideos/Videos/2011/06/HugefluctuationsinGradflexexperiment

  • Ortiz de Zárate, J.M., Sengers, J.V.: Hydrodynamic Fluctuations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  • Ortiz de Zárate, J.M., Fornés, J.A., Sengers, J.V.: Long-wavelength nonequilibrium concentration fluctuations induced by the Soret effect. Phys. Rev. E 74, 046305 (2006)

    Article  Google Scholar 

  • Ortiz de Zárate, J.M., Kirkpatrick, T.R., Sengers, J.V.: Non-equilibrium concentration fluctuations in binary liquids with realistic boundary conditions. Eur. Phys. J. E 38, 99 (2015)

    Article  Google Scholar 

  • Rauch, J., Köhler, W.: Diffusion and thermal diffusion of semidilute to concentrated solutions of polystyrene in toluene in the vicinity of the glass transition. phys. Rev. Lett. 88, 185901 (2002)

    Article  Google Scholar 

  • Rauch, J., Köhler, W.: Collective and thermal diffusion in dilute, semidilute, and concentrated solutions of polystyrene in toluene. J. Chem. Phys. 119, 11977 (2003)

    Article  Google Scholar 

  • Segrè, P.N., Sengers, J.V.: Nonequilibrium fluctuations in liquid mixtures under the influence of gravity. Physica A 198, 46 (1993)

    Article  Google Scholar 

  • Settles, G.S.: Schlieren and Shadowgraph Techniques. Springer, Berlin (2001)

    Book  Google Scholar 

  • Shevtsova, V.: IVIDIL experiment onboard the ISS. Adv. Space Res. 672, 46–51 (2010)

    Google Scholar 

  • Shevtsova, V., et al.: IVIDIL Experiment onboard ISS: thermodiffusion in presence of controlled vibrations. C. R. Mécanique 339, 310–317 (2011)

    Article  Google Scholar 

  • Shevtsova, V., et al.: Diffusion and soret in ternary mixtures. preparation of the DCMIX2 experiment on the ISS. Microgravity Sci. Technol. 25, 275–283 (2014)

    Article  Google Scholar 

  • Snell, E.H., Helliwell, J.R.: Macromolecular crystallization in microgravity. Rep. Prog. Phys. 68, 799–853 (2005)

    Article  Google Scholar 

  • Soret, C.: Etat d’équilibre des dissolutions dont deux parties sont portées à des températures différentes. Arch. Sci. Phys. Nat. 3, 48 (1879)

    Google Scholar 

  • Takacs, C.J., et al.: Thermal fluctuations in a layer of CS2 subjected to temperature gradients with and without the influence of gravity. Phys. Rev. Lett. 106, 244502 (2011)

    Article  Google Scholar 

  • Trainoff, S., Cannell, D.S.: Physical optics treatment of the shadowgraph. Phys. Fluids 14, 1340 (2002)

    Article  Google Scholar 

  • Vailati, A., Giglio, M.: Giant fluctuations in a free diffusion process. Nature 390, 262 (1997)

    Article  Google Scholar 

  • Vailati, A., Giglio, M.: Nonequilibrium fluctuations in time-dependent diffusion processes. Phys. Rev. E 58, 4361 (1998)

    Article  Google Scholar 

  • Vailati, A., Cerbino, R., Mazzoni, S., Giglio, M., Nikolaenko, G., Takacs, C.J., Cannell, D.S., Meyer, W.V., Smart, A.E.: Gradient-driven fluctuations experiment: fluid fluctuations in microgravity. App. Opt. 45, 2155 (2006)

    Article  Google Scholar 

  • Vailati, A., Cerbino, R., Mazzoni, S., Takacs, C.J., Cannell, D.S., Giglio, M.: Fractal fronts of diffusion in microgravity. Nature Comm. 2, 290 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

We warmly thank D.S. Cannell, M. Giglio, S. Mazzoni, C.J. Takacs, O. Minster, A. Verga, F. Molster, N. Melville, W. Meyer, A. Smart, R. Greger, B. Hirtz, and R. Pereira for their contribution to the GRADFLEX project. We gratefully acknowledge the European Space Agency (ESA) and the National Aeronautics and Space Administration (NASA) for support to ground-based activities. ESA is also thanked for sponsoring the flight opportunity. We acknowledge the contribution of the Telesupport team and of the industrial consortium led by RUAG aerospace. F.C. and H.B. acknowledge support from the French Centre Nationale d’Etudes Spatiales (CNES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Croccolo.

Additional information

This article belongs to the Topical Collection: Advances in Gravity-related Phenomena in Biological, Chemical and Physical Systems

Guest Editors: Valentina Shevtsova, Ruth Hemmersbach

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Croccolo, F., Giraudet, C., Bataller, H. et al. Shadowgraph Analysis of Non-equilibrium Fluctuations for Measuring Transport Properties in Microgravity in the GRADFLEX Experiment. Microgravity Sci. Technol. 28, 467–475 (2016). https://doi.org/10.1007/s12217-016-9501-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-016-9501-1

Keywords

Navigation