Advertisement

Microgravity Science and Technology

, Volume 28, Issue 3, pp 237–245 | Cite as

Tissue Engineering of Cartilage on Ground-Based Facilities

  • Ganna Aleshcheva
  • Johann Bauer
  • Ruth Hemmersbach
  • Marcel Egli
  • Markus Wehland
  • Daniela GrimmEmail author
ORIGINAL ARTICLE

Abstract

Investigations under simulated microgravity offer the opportunity for a better understanding of the influence of altered gravity on cells and the scaffold-free three-dimensional (3D) tissue formation. To investigate the short-term influence, human chondrocytes were cultivated for 2 h, 4 h, 16 h, and 24 h on a 2D Fast-Rotating Clinostat (FRC) in DMEM/F-12 medium supplemented with 10 % FCS. We detected holes in the vimentin network, perinuclear accumulations of vimentin after 2 h, and changes in the chondrocytes shape visualised by F-actin staining after 4 h of FRC-exposure. Scaffold-free cultivation of chondrocytes for 7 d on the Random Positioning Machine (RPM), the FRC and the Rotating Wall Vessel (RWV) resulted in spheroid formation, a phenomenon already known from spaceflight experiments with chondrocytes (MIR Space Station) and thyroid cancer cells (SimBox/Shenzhou-8 space mission). The experiments enabled by the ESA-CORA-GBF programme gave us an optimal opportunity to study gravity-related cellular processes, validate ground-based facilities for our chosen cell system, and prepare long-term experiments under real microgravity conditions in space

Keywords

Microgravity Random Positioning Machine Clinostat Rotating Wall Vessel Chondrocytes Cartilage Cytoskeleton Tissue engineering 

Notes

Acknowledgments

The authors would like to thank Helmholtz Space Life Sciences Research School (SpaceLife), the German Aerospace Centre (DLR; (DG) BMWi project 50WB1124 and 50WB1524), the European Space Agency (ESA; CORA-GBF-2013-004 with Acronym Cartilage) (DG), Aarhus University, Denmark (DG), and DGLRM (Young Fellow Programme for GA). The data in this publication are part of the PhD thesis of Dipl.-Ing. Ganna Aleshcheva.

References

  1. Akmal, M., Anand, A., Anand, B., Wiseman, M., Goodship, A.E, Bentley, G.: The culture of articular chondrocytes in hydrogel constructs within a bioreactor enhances cell proliferation and matrix synthesis. J. Bone Joint Surg. Br. 88, 544–553 (2006)CrossRefGoogle Scholar
  2. Aleshcheva, G., Sahana, J., Ma, X., Hauslage, J., Hemmersbach, R., Egli, M., Infanger, M., Bauer, J., Grimm, D.: Changes in morphology, gene expression and protein content in chondrocytes cultured on a random positioning machine. PLoS One 8, e6814 (2013)CrossRefGoogle Scholar
  3. Aleshcheva, G., Wehland, M., Sahana, J., Bauer, J., Corydon, T.J., Hemmersbach, R., Frett, T., Egli, M., Infanger, M., Grosse, J., Grimm, D.: Moderate alterations of the cytoskeleton in human chondrocytes after short-term microgravity produced by parabolic flight maneuvers could be prevented by up-regulation of BMP-2 and SOX-9. FASEB J. 29, 2303–2314 (2015)CrossRefGoogle Scholar
  4. Aubin, J.E., Liu, F., Malaval, L., Gupta, A.K.: Osteoblast and chondroblast differentiation. Bone 17, 77–83 (1995)CrossRefGoogle Scholar
  5. Benjamin, M., Archer, C. W., Ralphs, J. R.: Cytoskeleton of cartilage cells. Microsc. Res. Tech. 28, 372–377 (1994)CrossRefGoogle Scholar
  6. Borst, A.G., van Loon, J.J.: Technology and Developments for the Random Positioning Machine, RPM. Microgravity Sci. Technol. 21, 287–292 (2009)CrossRefGoogle Scholar
  7. Briegleb, W.: Some qualitative and quantitative aspects of the fast-rotating clinostat as a research tool. ASGSB Bull 5, 23–30 (1992)Google Scholar
  8. Buckwalter, J.A., Mankin, H.J.: Articular cartilage. I. Tissue design and chondrocyte–matrix interactions. Instr. Course Lect. 47, 477–486 (1998)Google Scholar
  9. Buravkova, L., Romanov, Y., Rykova, M., Grigorieva, O., Merzlikina, N.: Cell-to-cell interactions in changed gravity: ground-based and flight experiments. Acta Astronaut. 57, 67–74 (2005)CrossRefGoogle Scholar
  10. Cerwinka, W.H., Sharp, S.M., Boyan, B.D., Zhau, H.E, Chung, L.W., Yates, C.: Differentiation of human mesenchymal stem cell spheroids under microgravity conditions. Cell Regen. (Lond). 1, 2 (2012)CrossRefGoogle Scholar
  11. Cogoli, A., Cogoli-Greuter, M. In: Brinckmann, E (ed.) : Cells of the immune system in space (lymphocytes), pp. 193–222. Wiley-VCH, Weinheim (2007)Google Scholar
  12. Cogoli-Greuter, M., Lovis, P., Vadrucci, S.: Signal transduction in T cells: an overview. J. Gravit. Physiol. 11, 53–56 (2004)Google Scholar
  13. Eiermann, P., Kopp, S., Hauslage, J., Hemmersbach, R., Gerzer, R., Ivanova, K.: Adaptation of a 2D clinostat for simulated microgravity experiments with adherent cells. Micrograv. Sci. Technol. 25, 153–159 (2013)CrossRefGoogle Scholar
  14. Freed, L.E, Langer, R., Martin, I., Pellis, N.R, Vunjak-Novakovic, G.: Tissue engineering of cartilage in space. Proc. Natl. Acad. Sci. U S A. 94, 13885–13890 (1997)CrossRefGoogle Scholar
  15. Grimm, D., Bauer, J., Kossmehl, P., Shakibaei, M., Schönberger, J., Pickenhahn, H., Schulze-Tanzil, G., Vetter, R., Eilles, C., Paul, M., Cogoli, A.: Simulated microgravity alters differentiation and increases apoptosis in human follicular thyroid carcinoma cells. FASEB J 16, 604–606 (2002)Google Scholar
  16. Grimm, D., Infanger, M., Westphal, K., Ulbrich, C., Pietsch, J., Kossmehl, P., Vadrucci, S., Baatout, S., Flick, B., Paul, M., Bauer, J.: A delayed type of three-dimensional growth of human endothelial cells under simulated weightlessness. Tissue Eng Part A 15, 2267–2275 (2009)CrossRefGoogle Scholar
  17. Grimm, D., Bauer, J., Ulbrich, C., Westphal, K., Wehland, M., Infanger, M., Aleshcheva, G., Pietsch, J., Ghardi, M., Beck, M., El-Saghire, H., de Saint-Georges, L., Baatout, S.: Different responsiveness of endothelial cells to vascular endothelial growth factor and basic fibroblast growth factor added to culture media under gravity and simulated microgravity. Tissue Eng Part A 16, 1559–1573 (2010)CrossRefGoogle Scholar
  18. Grimm, D., Wise, P., Lebert, M., Richter, P., Baatout, S.: How and why does the proteome respond to microgravity. Expert Rev Proteomics 8, 13–27 (2011)CrossRefGoogle Scholar
  19. Grimm, D., Wehland, M., Pietsch, J., Aleshcheva, G., Wise, P., van Loon, J., Ulbrich, C., Magnusson, N.E., Infanger, M., Bauer, J.: Growing tissues in real and simulated microgravity: new methods for tissue engineering. Tissue Eng Part B Rev 20, 555–566 (2014)CrossRefGoogle Scholar
  20. Herranz, R., Anken, R., Boonstra, J., Braun, M., Christianen, P.C, de Geest, M., Hauslage, J., Hilbig, R., Hill, R.J., Lebert, M., Medina, F.J., Vagt, N., Ullrich, O., van Loon, J.J., Hemmersbach, R.: Ground-based facilities for simulation of microgravity: organism-specific recommendations for their use, and recommended terminology. Astrobiology 13, 1–17 (2013)CrossRefGoogle Scholar
  21. Infanger, M., Ulbrich, C., Baatout, S., Wehland, M., Kreutz, R., Bauer, J., Grosse, J., Vadrucci, S., Cogoli, A., Derradji, H., Neefs, M., Küsters, S., Spain, M., Paul, M., Grimm, D.: Modeled gravitational unloading induced downregulation of endothelin-1 in human endothelial cells. Cell Biochem 101, 1439–1455 (2007)CrossRefGoogle Scholar
  22. Johnstone, B., Hering, T.M., Caplan, A. I., Goldberg, V.M., Yoo, J.U.: In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp. Cell Res. 238, 265–272 (1998)CrossRefGoogle Scholar
  23. Koch, R.J., Gorti, G.K.: Tissue engineering with chondrocytes. Facial Plast. Surg. 18, 59–68 (2002)CrossRefGoogle Scholar
  24. Kuznetsov, S.A., Mankani, M.H., Gronthos, S., Satomura, K., Bianco, P., Robey, P.G.: Circulating skeletal stem cells. J. Cell. Biol. 153, 1133–1140 (2001)CrossRefGoogle Scholar
  25. Ma, X., Pietsch, J., Wehland, M., Schulz, H., Saar, K., Hübner, N., Bauer, J., Braun, M., Schwarzwälder, A., Segerer, J., Birlem, M., Horn, A., Hemmersbach, R., Waßer, K., Grosse, J., Infanger, M., Grimm, D.: Differential gene expression profile and altered cytokine secretion of thyroid cancer cells in space. FASEB J. 28, 813–35 (2014)CrossRefGoogle Scholar
  26. Marlovits, S., Tichy, B., Truppe, M., Gruber, D., Schlegel, W.: Collagen expression in tissue engineered cartilage of aged human articular chondrocytes in a rotating bioreactor. Int. J. Artif. Organs 26, 319–330 (2003a)Google Scholar
  27. Marlovits, S., Tichy, B., Truppe, M., Gruber, D., Vécsei, V.: Chondrogenesis of aged human articular cartilage in a scaffold-free bioreactor. Tissue Eng 9, 1215–26 (2003b)CrossRefGoogle Scholar
  28. Mitteregger, R., Vogt, G., Rossmanith, E., Falkenhagenm, D.: Rotary cell culture system (RCCS): a new method for cultivating hepatocytes on microcarriers. Int. J. Artif. Organs 22, 816–822 (1999)Google Scholar
  29. Nakamura, S., Arai, Y., Takahashi, K.A., Terauchi, R., Ohashi, S., Mazda, O., Imanishi, J., Inoue, A., Tonomura, H., Kubo, T.: Hydrostatic pressure induces apoptosis of chondrocytes cultured in alginate beads. J. Orthop. Res. 24, 733–739 (2006)CrossRefGoogle Scholar
  30. Ohgushi, H., Caplan, A. I.: Stem cell technology and bioceramics: from cell to gene engineering. J. Biomed. Mater. Res. 48, 913–927 (1999)CrossRefGoogle Scholar
  31. Pietsch, J., Sickmann, A., Weber, G., Bauer, J., Egli, M., Wildgruber, R., Infanger, M., Grimm, D.: A proteomic approach to analysing spheroid formation of two human thyroid cell lines cultured on a random positioning machine. Proteomics 11, 2095–2104 (2011a)CrossRefGoogle Scholar
  32. Pietsch, J., Bauer, J., Egli, M., Infanger, M., Wise, P., Ulbrich, C., Grimm, D.: The effects of weightlessness on the human organism and mammalian cells. Curr. Mol. Med 11, 350–364 (2011b)CrossRefGoogle Scholar
  33. Pietsch, J., Ma, X., Wehland, M., Aleshcheva, G., Schwarzwälder, A., Segerer, J., Birlem, M., Horn, A., Bauer, J., Infanger, M., Grimm, D.: Spheroid formation of human thyroid cancer cells in an automated culturing system during the Shenzhou-8 space mission. Biomaterials 34, 7694–7705 (2013)CrossRefGoogle Scholar
  34. Riwaldt, S., Pietsch, J., Sickmann, A., Bauer, J., Braun, M., Segerer, J., Schwarzwälder, A., Aleshcheva, G., Corydon, T.J., Infanger, M., Grimm, D.: Identification of proteins involved in inhibition of spheroid formation under microgravity. Proteomics 15, 2945–2952 (2015)CrossRefGoogle Scholar
  35. Svejgaard, B., Wehland, M., Ma, X., Kopp, S., Sahana, J., Warnke, E., Aleshcheva, G., Hemmersbach, R., Hauslage, J., Grosse, J., Bauer, J., Corydon, T.J., Islam, T., Infanger, M., Grimm, D.: Common effects on cancer cells exerted by a Random Positioning Machine and a 2D clinostat. PLoS One 10, e0135157 (2015)CrossRefGoogle Scholar
  36. Schwarz, R.P., Goodwin, T.J., Wolf, D.A.: Cell culture for three-dimensional modeling in rotating-wall vessels: an application of simulated microgravity. J. Tissue Cult. Methods 14, 51–57 (1992)CrossRefGoogle Scholar
  37. Stockwell, R.A.: The cell density of human articular and costal cartilage. J. Anat 101, 753–763 (1967)Google Scholar
  38. Temenoff, J.S., Mikos, A.G: Review: tissue engineering for regeneration of articular cartilage. Biomaterials 21, 431–440 (2000)CrossRefGoogle Scholar
  39. Uva, B. M., Masini, M. A., Sturla, M., Prato, P., Passalacqua, M., Giuliani, M., Tagliafierro, G., Strollo, F.: Clinorotation-induced weightlessness influences the cytoskeleton of glial cells in culture. Brain Res 934, 132–139 (2002)CrossRefGoogle Scholar
  40. van Loon, J.: Some history and use of the random positioning machine, RPM, in gravity related research. Adv. Space Res. 39, 1161–1165 (2007)CrossRefGoogle Scholar
  41. Vorselen, D., Roos, W.H., MacKintosh, F.C., Wuite, G.J., van Loon, J.J.: The role of the cytoskeleton in sensing changes in gravity by nonspecialized cells. FASEB J. 28, 536–547 (2014)CrossRefGoogle Scholar
  42. Wakitani, S., Goto, T., Pineda, S.J., Young, R.G., Mansour, J.M., Caplan, A.I., Goldberg, V.M.: Mesenchymal cellbased repair of large, full-thickness defects of articular cartilage. J. Bone. Joint. Surg. Am. 76, 579–592 (1994)Google Scholar
  43. Warnke, E., Pietsch, J., Wehland, M., Bauer, J., Infanger, M., Görög, M., Hemmersbach, R., Braun, M., Ma, X., Sahana, J., Grimm, D.: Spheroid formation of human thyroid cancer cells under simulated microgravity: a possible role of CTGF and CAV1. Cell Commun. Signal 12, 32 (2014)CrossRefGoogle Scholar
  44. Wehland, M., Aleshcheva, G., Schulz, H., Saar, K., Hübner, N., Hemmersbach, R., Braun, M., Ma, X., Frett, T., Warnke, E., Riwaldt, S., Pietsch, J., Corydon, T.J., Infanger, M., Grimm, D.: Differential gene expression of human chondrocytes cultured under short-term altered gravity conditions during parabolic flight maneuvers. Cell Commun. Signal 20(13), 18 (2015)CrossRefGoogle Scholar
  45. Wu, X., Li, S.H, Lou, L.M, Chen, Z.R.: The effect of the microgravity rotating culture system on the chondrogenic differentiation of bone marrow mesenchymal stem cells. Mol. Biotechnol 54, 331–336 (2013)CrossRefGoogle Scholar
  46. Zanetti, N.C., Solursh, M.: Induction of chondrogenesis in limb mesenchymal cultures by disruption of the actin cytoskeleton. J. Cell Biol 99, 115–123 (1984)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Ganna Aleshcheva
    • 1
  • Johann Bauer
    • 2
  • Ruth Hemmersbach
    • 3
  • Marcel Egli
    • 4
  • Markus Wehland
    • 1
  • Daniela Grimm
    • 1
    • 5
    Email author
  1. 1.Clinic for Plastic, Aesthetic and Hand SurgeryOtto-von-Guericke UniversityMagdeburgGermany
  2. 2.Max-Planck-Institute for BiochemistryMartinsriedGermany
  3. 3.German Aerospace Centre (DLR), Gravitational BiologyCologneGermany
  4. 4.Aerospace Biomedical Science & Technology Space Biology GroupLucerne University of Applied Sciences and ArtsHergiswilSwitzerland
  5. 5.Department of BiomedicineAarhus UniversityAarhus CDenmark

Personalised recommendations