Skip to main content
Log in

Tissue Engineering of Cartilage on Ground-Based Facilities

  • ORIGINAL ARTICLE
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

Investigations under simulated microgravity offer the opportunity for a better understanding of the influence of altered gravity on cells and the scaffold-free three-dimensional (3D) tissue formation. To investigate the short-term influence, human chondrocytes were cultivated for 2 h, 4 h, 16 h, and 24 h on a 2D Fast-Rotating Clinostat (FRC) in DMEM/F-12 medium supplemented with 10 % FCS. We detected holes in the vimentin network, perinuclear accumulations of vimentin after 2 h, and changes in the chondrocytes shape visualised by F-actin staining after 4 h of FRC-exposure. Scaffold-free cultivation of chondrocytes for 7 d on the Random Positioning Machine (RPM), the FRC and the Rotating Wall Vessel (RWV) resulted in spheroid formation, a phenomenon already known from spaceflight experiments with chondrocytes (MIR Space Station) and thyroid cancer cells (SimBox/Shenzhou-8 space mission). The experiments enabled by the ESA-CORA-GBF programme gave us an optimal opportunity to study gravity-related cellular processes, validate ground-based facilities for our chosen cell system, and prepare long-term experiments under real microgravity conditions in space

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akmal, M., Anand, A., Anand, B., Wiseman, M., Goodship, A.E, Bentley, G.: The culture of articular chondrocytes in hydrogel constructs within a bioreactor enhances cell proliferation and matrix synthesis. J. Bone Joint Surg. Br. 88, 544–553 (2006)

    Article  Google Scholar 

  • Aleshcheva, G., Sahana, J., Ma, X., Hauslage, J., Hemmersbach, R., Egli, M., Infanger, M., Bauer, J., Grimm, D.: Changes in morphology, gene expression and protein content in chondrocytes cultured on a random positioning machine. PLoS One 8, e6814 (2013)

    Article  Google Scholar 

  • Aleshcheva, G., Wehland, M., Sahana, J., Bauer, J., Corydon, T.J., Hemmersbach, R., Frett, T., Egli, M., Infanger, M., Grosse, J., Grimm, D.: Moderate alterations of the cytoskeleton in human chondrocytes after short-term microgravity produced by parabolic flight maneuvers could be prevented by up-regulation of BMP-2 and SOX-9. FASEB J. 29, 2303–2314 (2015)

    Article  Google Scholar 

  • Aubin, J.E., Liu, F., Malaval, L., Gupta, A.K.: Osteoblast and chondroblast differentiation. Bone 17, 77–83 (1995)

    Article  Google Scholar 

  • Benjamin, M., Archer, C. W., Ralphs, J. R.: Cytoskeleton of cartilage cells. Microsc. Res. Tech. 28, 372–377 (1994)

    Article  Google Scholar 

  • Borst, A.G., van Loon, J.J.: Technology and Developments for the Random Positioning Machine, RPM. Microgravity Sci. Technol. 21, 287–292 (2009)

    Article  Google Scholar 

  • Briegleb, W.: Some qualitative and quantitative aspects of the fast-rotating clinostat as a research tool. ASGSB Bull 5, 23–30 (1992)

    Google Scholar 

  • Buckwalter, J.A., Mankin, H.J.: Articular cartilage. I. Tissue design and chondrocyte–matrix interactions. Instr. Course Lect. 47, 477–486 (1998)

    Google Scholar 

  • Buravkova, L., Romanov, Y., Rykova, M., Grigorieva, O., Merzlikina, N.: Cell-to-cell interactions in changed gravity: ground-based and flight experiments. Acta Astronaut. 57, 67–74 (2005)

    Article  Google Scholar 

  • Cerwinka, W.H., Sharp, S.M., Boyan, B.D., Zhau, H.E, Chung, L.W., Yates, C.: Differentiation of human mesenchymal stem cell spheroids under microgravity conditions. Cell Regen. (Lond). 1, 2 (2012)

    Article  Google Scholar 

  • Cogoli, A., Cogoli-Greuter, M. In: Brinckmann, E (ed.) : Cells of the immune system in space (lymphocytes), pp. 193–222. Wiley-VCH, Weinheim (2007)

  • Cogoli-Greuter, M., Lovis, P., Vadrucci, S.: Signal transduction in T cells: an overview. J. Gravit. Physiol. 11, 53–56 (2004)

    Google Scholar 

  • Eiermann, P., Kopp, S., Hauslage, J., Hemmersbach, R., Gerzer, R., Ivanova, K.: Adaptation of a 2D clinostat for simulated microgravity experiments with adherent cells. Micrograv. Sci. Technol. 25, 153–159 (2013)

    Article  Google Scholar 

  • Freed, L.E, Langer, R., Martin, I., Pellis, N.R, Vunjak-Novakovic, G.: Tissue engineering of cartilage in space. Proc. Natl. Acad. Sci. U S A. 94, 13885–13890 (1997)

    Article  Google Scholar 

  • Grimm, D., Bauer, J., Kossmehl, P., Shakibaei, M., Schönberger, J., Pickenhahn, H., Schulze-Tanzil, G., Vetter, R., Eilles, C., Paul, M., Cogoli, A.: Simulated microgravity alters differentiation and increases apoptosis in human follicular thyroid carcinoma cells. FASEB J 16, 604–606 (2002)

    Google Scholar 

  • Grimm, D., Infanger, M., Westphal, K., Ulbrich, C., Pietsch, J., Kossmehl, P., Vadrucci, S., Baatout, S., Flick, B., Paul, M., Bauer, J.: A delayed type of three-dimensional growth of human endothelial cells under simulated weightlessness. Tissue Eng Part A 15, 2267–2275 (2009)

    Article  Google Scholar 

  • Grimm, D., Bauer, J., Ulbrich, C., Westphal, K., Wehland, M., Infanger, M., Aleshcheva, G., Pietsch, J., Ghardi, M., Beck, M., El-Saghire, H., de Saint-Georges, L., Baatout, S.: Different responsiveness of endothelial cells to vascular endothelial growth factor and basic fibroblast growth factor added to culture media under gravity and simulated microgravity. Tissue Eng Part A 16, 1559–1573 (2010)

    Article  Google Scholar 

  • Grimm, D., Wise, P., Lebert, M., Richter, P., Baatout, S.: How and why does the proteome respond to microgravity. Expert Rev Proteomics 8, 13–27 (2011)

    Article  Google Scholar 

  • Grimm, D., Wehland, M., Pietsch, J., Aleshcheva, G., Wise, P., van Loon, J., Ulbrich, C., Magnusson, N.E., Infanger, M., Bauer, J.: Growing tissues in real and simulated microgravity: new methods for tissue engineering. Tissue Eng Part B Rev 20, 555–566 (2014)

    Article  Google Scholar 

  • Herranz, R., Anken, R., Boonstra, J., Braun, M., Christianen, P.C, de Geest, M., Hauslage, J., Hilbig, R., Hill, R.J., Lebert, M., Medina, F.J., Vagt, N., Ullrich, O., van Loon, J.J., Hemmersbach, R.: Ground-based facilities for simulation of microgravity: organism-specific recommendations for their use, and recommended terminology. Astrobiology 13, 1–17 (2013)

    Article  Google Scholar 

  • Infanger, M., Ulbrich, C., Baatout, S., Wehland, M., Kreutz, R., Bauer, J., Grosse, J., Vadrucci, S., Cogoli, A., Derradji, H., Neefs, M., Küsters, S., Spain, M., Paul, M., Grimm, D.: Modeled gravitational unloading induced downregulation of endothelin-1 in human endothelial cells. Cell Biochem 101, 1439–1455 (2007)

    Article  Google Scholar 

  • Johnstone, B., Hering, T.M., Caplan, A. I., Goldberg, V.M., Yoo, J.U.: In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp. Cell Res. 238, 265–272 (1998)

    Article  Google Scholar 

  • Koch, R.J., Gorti, G.K.: Tissue engineering with chondrocytes. Facial Plast. Surg. 18, 59–68 (2002)

    Article  Google Scholar 

  • Kuznetsov, S.A., Mankani, M.H., Gronthos, S., Satomura, K., Bianco, P., Robey, P.G.: Circulating skeletal stem cells. J. Cell. Biol. 153, 1133–1140 (2001)

    Article  Google Scholar 

  • Ma, X., Pietsch, J., Wehland, M., Schulz, H., Saar, K., Hübner, N., Bauer, J., Braun, M., Schwarzwälder, A., Segerer, J., Birlem, M., Horn, A., Hemmersbach, R., Waßer, K., Grosse, J., Infanger, M., Grimm, D.: Differential gene expression profile and altered cytokine secretion of thyroid cancer cells in space. FASEB J. 28, 813–35 (2014)

    Article  Google Scholar 

  • Marlovits, S., Tichy, B., Truppe, M., Gruber, D., Schlegel, W.: Collagen expression in tissue engineered cartilage of aged human articular chondrocytes in a rotating bioreactor. Int. J. Artif. Organs 26, 319–330 (2003a)

    Google Scholar 

  • Marlovits, S., Tichy, B., Truppe, M., Gruber, D., Vécsei, V.: Chondrogenesis of aged human articular cartilage in a scaffold-free bioreactor. Tissue Eng 9, 1215–26 (2003b)

    Article  Google Scholar 

  • Mitteregger, R., Vogt, G., Rossmanith, E., Falkenhagenm, D.: Rotary cell culture system (RCCS): a new method for cultivating hepatocytes on microcarriers. Int. J. Artif. Organs 22, 816–822 (1999)

    Google Scholar 

  • Nakamura, S., Arai, Y., Takahashi, K.A., Terauchi, R., Ohashi, S., Mazda, O., Imanishi, J., Inoue, A., Tonomura, H., Kubo, T.: Hydrostatic pressure induces apoptosis of chondrocytes cultured in alginate beads. J. Orthop. Res. 24, 733–739 (2006)

    Article  Google Scholar 

  • Ohgushi, H., Caplan, A. I.: Stem cell technology and bioceramics: from cell to gene engineering. J. Biomed. Mater. Res. 48, 913–927 (1999)

    Article  Google Scholar 

  • Pietsch, J., Sickmann, A., Weber, G., Bauer, J., Egli, M., Wildgruber, R., Infanger, M., Grimm, D.: A proteomic approach to analysing spheroid formation of two human thyroid cell lines cultured on a random positioning machine. Proteomics 11, 2095–2104 (2011a)

    Article  Google Scholar 

  • Pietsch, J., Bauer, J., Egli, M., Infanger, M., Wise, P., Ulbrich, C., Grimm, D.: The effects of weightlessness on the human organism and mammalian cells. Curr. Mol. Med 11, 350–364 (2011b)

    Article  Google Scholar 

  • Pietsch, J., Ma, X., Wehland, M., Aleshcheva, G., Schwarzwälder, A., Segerer, J., Birlem, M., Horn, A., Bauer, J., Infanger, M., Grimm, D.: Spheroid formation of human thyroid cancer cells in an automated culturing system during the Shenzhou-8 space mission. Biomaterials 34, 7694–7705 (2013)

    Article  Google Scholar 

  • Riwaldt, S., Pietsch, J., Sickmann, A., Bauer, J., Braun, M., Segerer, J., Schwarzwälder, A., Aleshcheva, G., Corydon, T.J., Infanger, M., Grimm, D.: Identification of proteins involved in inhibition of spheroid formation under microgravity. Proteomics 15, 2945–2952 (2015)

    Article  Google Scholar 

  • Svejgaard, B., Wehland, M., Ma, X., Kopp, S., Sahana, J., Warnke, E., Aleshcheva, G., Hemmersbach, R., Hauslage, J., Grosse, J., Bauer, J., Corydon, T.J., Islam, T., Infanger, M., Grimm, D.: Common effects on cancer cells exerted by a Random Positioning Machine and a 2D clinostat. PLoS One 10, e0135157 (2015)

    Article  Google Scholar 

  • Schwarz, R.P., Goodwin, T.J., Wolf, D.A.: Cell culture for three-dimensional modeling in rotating-wall vessels: an application of simulated microgravity. J. Tissue Cult. Methods 14, 51–57 (1992)

    Article  Google Scholar 

  • Stockwell, R.A.: The cell density of human articular and costal cartilage. J. Anat 101, 753–763 (1967)

    Google Scholar 

  • Temenoff, J.S., Mikos, A.G: Review: tissue engineering for regeneration of articular cartilage. Biomaterials 21, 431–440 (2000)

    Article  Google Scholar 

  • Uva, B. M., Masini, M. A., Sturla, M., Prato, P., Passalacqua, M., Giuliani, M., Tagliafierro, G., Strollo, F.: Clinorotation-induced weightlessness influences the cytoskeleton of glial cells in culture. Brain Res 934, 132–139 (2002)

    Article  Google Scholar 

  • van Loon, J.: Some history and use of the random positioning machine, RPM, in gravity related research. Adv. Space Res. 39, 1161–1165 (2007)

    Article  Google Scholar 

  • Vorselen, D., Roos, W.H., MacKintosh, F.C., Wuite, G.J., van Loon, J.J.: The role of the cytoskeleton in sensing changes in gravity by nonspecialized cells. FASEB J. 28, 536–547 (2014)

    Article  Google Scholar 

  • Wakitani, S., Goto, T., Pineda, S.J., Young, R.G., Mansour, J.M., Caplan, A.I., Goldberg, V.M.: Mesenchymal cellbased repair of large, full-thickness defects of articular cartilage. J. Bone. Joint. Surg. Am. 76, 579–592 (1994)

    Google Scholar 

  • Warnke, E., Pietsch, J., Wehland, M., Bauer, J., Infanger, M., Görög, M., Hemmersbach, R., Braun, M., Ma, X., Sahana, J., Grimm, D.: Spheroid formation of human thyroid cancer cells under simulated microgravity: a possible role of CTGF and CAV1. Cell Commun. Signal 12, 32 (2014)

    Article  Google Scholar 

  • Wehland, M., Aleshcheva, G., Schulz, H., Saar, K., Hübner, N., Hemmersbach, R., Braun, M., Ma, X., Frett, T., Warnke, E., Riwaldt, S., Pietsch, J., Corydon, T.J., Infanger, M., Grimm, D.: Differential gene expression of human chondrocytes cultured under short-term altered gravity conditions during parabolic flight maneuvers. Cell Commun. Signal 20(13), 18 (2015)

    Article  Google Scholar 

  • Wu, X., Li, S.H, Lou, L.M, Chen, Z.R.: The effect of the microgravity rotating culture system on the chondrogenic differentiation of bone marrow mesenchymal stem cells. Mol. Biotechnol 54, 331–336 (2013)

    Article  Google Scholar 

  • Zanetti, N.C., Solursh, M.: Induction of chondrogenesis in limb mesenchymal cultures by disruption of the actin cytoskeleton. J. Cell Biol 99, 115–123 (1984)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Helmholtz Space Life Sciences Research School (SpaceLife), the German Aerospace Centre (DLR; (DG) BMWi project 50WB1124 and 50WB1524), the European Space Agency (ESA; CORA-GBF-2013-004 with Acronym Cartilage) (DG), Aarhus University, Denmark (DG), and DGLRM (Young Fellow Programme for GA). The data in this publication are part of the PhD thesis of Dipl.-Ing. Ganna Aleshcheva.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Grimm.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleshcheva, G., Bauer, J., Hemmersbach, R. et al. Tissue Engineering of Cartilage on Ground-Based Facilities. Microgravity Sci. Technol. 28, 237–245 (2016). https://doi.org/10.1007/s12217-015-9479-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-015-9479-0

Keywords

Navigation