Adrian, A., Schoppmann, K., Sromicki, J., Brungs, S., von der Wiesche, M., Hock, B., Kolanus, W., Hemmersbach, R., Ullrich, O.: The oxidative burst reaction in mammalian cells depends on gravity. Cell. Commun. Signal 11, 98 (2013)
Article
Google Scholar
Aleshcheva, G., Bauer, J., Hemmersbach, R., Egli, M., Grimm, D.: Tissue Engineering of cartilage on ground-based facilities. Microgravity Sci. Technol. (2015). doi:10.1007/s12217-015-9479-0
Anken, R., Bauer, U., Hilbig, R.: Clinorotation increases the growth of utricular otoliths of developing cichlid fish. Microgravity Sci. Technol. 22(2), 151–154 (2015)
Article
Google Scholar
Anken, R., Brungs, S., Grimm, D., Knie, M., Hilbig, R., Fish inner otolith growth under real microgravity (spaceflight) and clinorotation. Microgravity Sci. Technol. (2015). doi:10.1007/s12217-015-9459-4
Beaugnon, E., Tournier, R.: Levitation of water and organic substances in high static magnetic fields. J. Phys. III France 1, 1423–1428 (1991a)
Beaugnon, E., Tournier, R.: Levitation of organic materials. Nature 349, 6309 (1991b)
Beaugnon, E., Fabregue, D., Billy, D., Nappa, J., Tournier, R.: Dynamics of magnetically levitated droplets. Physica B 294, 715–720 (2001)
Article
Google Scholar
Benavides Damm, T., Walther, I., Wüest, S.L., Sekler, J., Egli, M.: Cell cultivation under different gravitational loads using a novel random positioning incubator. Biotechnol. Bioeng. 111(6), 1180–1190 (2014)
Article
Google Scholar
Berry, M.V., Geim, A.K.: Of flying frogs and levitrons. Eur. J. Phys. 18, 307–313 (1997)
MathSciNet
Article
Google Scholar
Beysens, D.A., van Loon, J.J.W.A (eds.): Generation and applications of extra-terrestrial environments on earth. River Publishers, Aalborg (2015). ISBN: 978-87-93237-53-7
Borst, A., van Loon, J.J.W.A.: Technology and developments for the random positioning machine, RPM. Microgravity Sci. Technol. 21(4), 287–292 (2009)
Article
Google Scholar
Briegleb, W.: Some qualitative and quantitative aspects of the fast-rotating clinostat as a research tool. ASGSB Bull 5, 23–30 (1992)
Google Scholar
Brungs, S., Hauslage, J., Hilbig, R., Hemmersbach, R., Anken, R.: Effects of simulated weightlessness on fish otolith growth: clinostat versus rotating-wall vessel. Adv. Space Res. 48, 792–798 (2011)
Article
Google Scholar
Brungs, S., Kolanus, W., Hemmersbach, R.: Syk phosphorylation – a gravisensitive step in macrophage signaling. Cell Commun. Signal 13(1), 9 (2015a)
Brungs, S., Petrat, G., von der Wiesche, M., Anken, R., Kolanus, W., Hemmersbach, R.: Simulating parabolic flight like g-profiles on ground - a combination of centrifuge and clinostat. Microgravity Sci. Technol. (2015b). doi:10.1007/s12217-015-9458-5
Catherall, A.T., Eaves, L., King, P.J., Booth, R.: Floating gold in cryogenic oxygen. Nature 422, 579 (2003)
Article
Google Scholar
Denegre, J.M., Valles Jr., J.M., Lin, K., Jordan, W.B., Mowry, K.L.: Cleavage planes in frog eggs are altered by strong magnetic fields. Proc. Natl. Acad. Sci. USA 95, 14729–14732 (1998)
Article
Google Scholar
Eiermann, P., Kopp, S., Hauslage, J., Hemmersbach, R., Gerzer, R., Ivanova, K.: Adaptation of a 2-D clinostat for simulated microgravity experiments with adherent cells. Microgravity Sci. Technol. 25, 153–159 (2013)
Article
Google Scholar
Fengler, S., Spirer, I., Neef, M., Ecke, M., Hauslage, J., Hampp, R.: changes in gene expression of Arabidopsis thaliana cell cultures upon exposure to real and simulated partial-g forces. Microgravity Sci. Technol. (2015). doi:10.1007/s12217-015-9452-y
Fischer, J., Schoppmann, K., Knie, M., Laforsch, C.: Responses of microcrustaceans to simulated microgravity (2D-clinorotation) - preliminary assessments for the development of Bioregenerative Life Support Systems (BLSS). Microgravity Sci. Technol. (2015). doi:10.1007/s12217-015-9470-9
Guevorkian, K., Valles, J.M.: Swimming Paramecium in magnetically simulated enhanced, reduced, and inverted gravity environments. PNAS 103, 13051–13056 (2006)
Article
Google Scholar
Häder, D.P., Hemmersbach, R., Lebert, M.: Gravity and the Behavior of Unicellular Organisms. Cambridge University Press, Cambridge (2005)
Book
Google Scholar
Hansen, P.-D., Unruh, E.: TRIPLE LUX – B: Phagocytosis in mussel hemocytes. Proc. 9th Eur. Symp. Life Sciences Research in Space. 26th Annu. Int. Gravitational Physiology Meeting. Cologne, Germany, ESA SP – 585 (2005)
Hasenstein, K.H., van Loon, J.J.W.A.: Clinostats and other rotating systems—Design, function, and limitations. In: Beysens, D.A., van Loon, J.J.W.A (eds.) Generation and Applications of Extra-Terrestrial Environments on Earth. River Publishers, Aalborg (2015)
Heijna, M.C.R., Poodt, P.W.G., Tsukamoto, K, de Grip, W.J., Christianen, P.C.M., Maan, J.C., Hendrix, J.L.A., van Enckevort W.J.P., Vlieg, E.: Magnetically controlled gravity for protein crystal growth. Appl. Phys. Lett. 90, 264105 (2007)
Article
Google Scholar
Hemmersbach, R., Voormanns, R., Häder, D.P.: Graviresponses in Paramecium biaurelia under different accelerations: studies on the ground and in space. J. Exp. Biol. 199, 2199–2205 (1996)
Google Scholar
Hemmersbach, R., Simon, A., Waßer, K., Hauslage, J., Christianen, P.C.M., Albers, P.W., Lebert, M., Richter, P., Alt, W., Anken, R.: Impact of a high magnetic field on the orientation of gravitactic unicellular organisms – A critical consideration about the application of magnetic fields to mimic functional weightlessness. Astrobiology 14, 205–215 (2014)
Article
Google Scholar
Hensel, W., Sievers, A.: Effects of prolonged omnilateral gravistimulation on the ultrastructure of statocytes and on the graviresponse of roots. Planta 150, 338–346 (1980)
Article
Google Scholar
Herranz, R., Anken, R., Boonstra, J., Braun, M., Christianen, P. C., Geest, M., Hauslage, J., Hilbig, R., Hill, R., Lebert, M., Medina, F., Vagt, N., Ullrich, O., van Loon, J., Hemmersbach, R.: Ground-based facilities for simulation of microgravity: organism-specific recommendations for their use, and recommended terminology. Astrobiology 13(1), 1–17 (2013a)
Herranz, R., Manzano, A.I., van Loon, J.J.W.A., Christianen, P.C.M., Medina, J.F.: Proteomic signature of Arabidopsis cell cultures exposed to magnetically induced hyper- and microgravity environments. Astrobiology 13, 217–224 (2013b)
Hill, R.J.A., Eaves, L.: Nonaxisymmetric shapes of a magnetically levitated spinning water droplet. Phys. Rev. Lett. 101, 234501 (2008)
Article
Google Scholar
Hill, R.J.A., Larkin, O.J., Dijkstra, C.E., Manzano, A.I, de Juan, E., Davey, M.R., Anthony, P., Eaves, L., Medina, J.F., Marco, R., Herranz, R.: Effect of magnetically simulated zero-gravity and enhanced gravity on the walk of the common fruit fly. J. R. Soc. Interface 9, 1438–1449 (2012)
Article
Google Scholar
Horn, A., Ullrich, O., Huber, K., Hemmersbach, R.: PMT (photomultiplier) clinostat. Microgravity Sci. Technol. 23, 67– 71 (2011)
Article
Google Scholar
Hoson, T., Seiichiro, K., Masuda, Y., Yamashita, M.: Changes in plant growth processes under microgravity conditions simulated by a three-dimensional clinostat. Bot. Mag. Tokyo 105(1), 53–70 (1992)
Article
Google Scholar
Hoson, T., Kamisaka, S., Masuda, Y., Yamashita, M., Buchen, B.: Evaluation of the three-dimensional clinostat as a simulator of weightlessness. Planta 203(1), 187–197 (1997)
Article
Google Scholar
Ikezoe, Y., Hirota, N., Nakagawa, J., Kitazawa, K.: Making water levitate. Nature 393, 749–750 (1998)
Article
Google Scholar
Kamal, K.Y., Herranz, R., van Loon, J.J.W.A., Christianen, P.C.M., Medina, F.J.: Evaluation of simulated microgravity environments induced by diamagnetic levitation of plant cell suspension cultures. Microgravity Sci. Technol. (2015). doi:10.1007/s12217-015-9472-7
Leguy, C.A., Delfos, R., Mathieu, J.B.M., Pourquie, Ch.P., Krooneman, J., Westerweel, van Loon, J.J.W.A.: Fluid motion for microgravity simulations in a random positioning machine. Gravit. Space Biol. Bull. 25 (1), 36–39 (2011)
Google Scholar
Lorin, C., Hill, R.J.A., Mailfert, A.: Magnetic levitation. In: Beysens, D.A., van Loon, J.J.W.A (eds.) Generation and Applications of Extra-Terrestrial Environments on Earth. River Publishers, Aalborg (2015)
Manzano, A.I., van Loon, J.J.W.A., Christianen, P.C.M., Gonzalez-Rubio, J.M., Medina, J.F., Herranz, R.: Gravitational and magnetic field variations synergize to reveal subtle variations in the global transcriptional state of Arabidopsis in vitro callus cultures. BMC Genom 13, 105 (2012)
Article
Google Scholar
Manzano, A., den Toom, A., Dowson, A., Valbuena, M.A., Medina, F.J., Herranz, R., van Loon, J.J.W.A.: Progressive effects from simulated microgravity to hypergravity on cell growth and proliferation and on gene expression in the Brassicaceae family. In: 30th Annu. American Society for Gravitational and Space Research (ASGSR) Conf., Pasadena, CA, USA (2014)
Maret, G., Dransfeld, K.: Biomolecules and polymers in high steady magnetic fields. In: Herlach, F (ed.) Topics in Applied Physics, vol. 57: Strong and Ultrastrong Magnetic Fields and their Applications, pp 143–204. Springer, NY (1985)
Mesland, D.: Novel ground-based facilities for research in the effects of weight. ESA Microgravity News 9, 5–10 (1996a)
Mesland, D., Anton, A., Willemsen, H., van den Ende, H.: The Free Fall Machine—a ground-based facility for microgravity research in life sciences. Microgravity Sci. Technol. 9(1), 10–14 (1996b)
Micali, N., Engelkamp, H., van Rhee, P.G., Christianen, P.C.M., Monsù Scolaro, L., Maan, J.C.: Selection of supramolecular chirality by application of rotational and magnetic forces. Nat. Chem. 4, 201–207 (2012)
Article
Google Scholar
Moes, M.J.A., Gielen, J.C., Bleichrodt, R., van Loon, J.J.W.A., Christianen, P.C.M., Boonstra, J.: Simulation of microgravity by magnetic levitation and random positioning: effect on human A431 cell morphology. Microgravity Sci. Technol. 23, 249–261 (2011)
Article
Google Scholar
Neef, M., Denn, T., Ecke, M., Hampp, R.: Intracellular calcium decrease upon hyper gravity-treatment of Arabidopsis thaliana cell cultures. Microgravity Sci. Technol. (2015). doi:10.1007/s12217-015-9457-6
Newcombe, F.C.: Limitations of the clinostat as an instrument for scientific research. Science 20, 376–379 (1904)
Article
Google Scholar
Pache, C., Kühn, J., Westphal, K., Fatih Toy, M., Parent, J., Büchi, O., Franco-Obregón, A., Depeursinge, C., Egli, M.: Digital holographic microscopy real-time monitoring of cytoarchitectural alterations during simulated microgravity. J. Biomed. Opt. 15(2), 026021 (2010)
Article
Google Scholar
Pacheco-Martinez, H.A., Liao, L., Hill, R.J.A., Swift, M.R., Bowley, R.M.: Spontaneous orbiting of two spheres levitated in a vibrated liquid. Phys. Rev. Lett. 110, 154501 (2013)
Article
Google Scholar
Paulsen, K., Thiel, C., Timm, J., Schmidt, P., Huber, K., Tauber, S., Hemmersbach, R., et al.: Microgravity-induced alterations in signal transduction in cells of the immune system. Acta Astronaut 67, 1116–1125 (2010)
Article
Google Scholar
Perenboom, J.A.A.J., Maan, J.C., van Breukelen, M.R., Wiegers, S.A.J., den Ouden, A., Wulffers, C.A., van der Zande, W.J., Jongma, R.T., van der Meer, A.F.G., Redlich, B.: Developments at the high field magnet laboratory in Nijmegen. J. Low. Temp. Phys. 170, 520–530 (2013)
Article
Google Scholar
Poodt, P.W.G., Heijna, M.C.R., Tsukamoto, K, de Grip, W.J., Christianen, P.C.M., Maan, J.C., van Enckevort, W.J.P., Vlieg, E.: Suppression of convection using gradient magnetic fields during crystal growth of NiSO4 ⋅6H2O. Appl. Phys. Lett. 87, 214105 (2005)
Article
Google Scholar
Rikken, R.S.M., Nolte, R.J.M., Maan, J.C., van Hest, J.C.M., Wilson, D.A., Christianen, P.C.M.: Manipulation of micro- and nanostructure motion with magnetic fields. Soft Matter 10, 1295–1308 (2014)
Article
Google Scholar
Scano, A.: Effeti di una variazione continua del campo gravitazionale sullo svoluppo ed accrescimento di Lathyrus Odororatus. Communication presented at 6th Int. and 12th Eur. Congr. Aeronautical and Space Medicine, Rome (1963)
Google Scholar
Schüler, O., Krause, L., Görög, M., Hauslage, J., Kesseler, L., Böhmer, M., Hemmersbach, R.: ARADISH – Development of a standardized plant growth chamber for experiments in gravitational biology using ground-based facilities. Microgravity Sci. Technol. (2015). doi:10.1007/s12217-015-9454-9
Google Scholar
Shinde, V., Brungs, S., Hescheler, J., Hemmersbach, R., Sachinidis, A.: Pipette-based method to study embryoid body formation derived from mouse and human pluripotent stem cells partially recapitulating early embryonic development under simulated microgravity conditions. Microgravity Sci. Technol. (2015). doi:10.1007/s12217-015-9469-2
Google Scholar
Toy, M.F., Parent, J., Kühn, J., Egli, M., Depeursinge, C.: Dual-mode digital holographic and fluorescence microscopy for the study of morphological changes in cells under simulated microgravity. Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XVII, 7570–7573 (2010)
Toy, M.F., Kühn, J., Richard, S., Parent, J., Egli, M., Depeursinge, C.: Accelerated autofocusing of off-axis holograms using critical sampling. Opt. Lett. 37(24), 5094–5096 (2012a)
Toy, M.F., Richard, S., Kühn, J., Franco-Obregón, A., Egli, M., Depeursinge, C.: Enhanced robustness digital holographic microscopy for demanding environment of space biology. Biomed. Opt. Express 3(2), 313–326 (2012b)
Unruh, E., Brungs, S., Langer, S., Bornemann, G., Frett, T., Hansen, P.-D.: Comprehensive study of the influence of altered gravity on the oxidative burst of mussel (Mytilus edulis) hemocytes. Microgravity, Sci. Technol. (2015). doi:10.1007/s12217-015-9438-9
Google Scholar
Valles, J.M., Lin, K., Denegre, J.M., Mowry, K.L.: Stable magnetic field gradient levitation of Xenopus laevis: Toward low-gravity simulation. Biophys. J. 73, 1130– 1133 (1997)
Article
Google Scholar
Valles Jr., J.M., Maris, H.J., Seidel, G.M., Tang, J., Yao, W.: Magnetic levitation-based Martian and Lunar gravity simulator. Adv. Space Res. 36, 114–118 (2005)
Article
Google Scholar
Van Loon, J.J.W.A., Veldhuijzen, J.P., Kiss, J., Wood, C., van de Ende, H., Guntemann, A., Jones, D., de Jong, H., Wubbels, R.: Microgravity research starts on the ground! Apparatus for long term ground based hypo- and hypergravity studies. In: Wilson, A. (ed.) ESA SP-433, pp 415–419. ESTEC Noordwijk, the Netherlands (1999)
Van Loon, J.J.W.A., Folgering, E.H.T.E., Bouten, C.V.C., Veldhuijzen, J.P., Smit, T.H.: Inertial shear forces and the use of centrifuges in gravity research. What is the proper control? ASME J. Biomech. Eng. 125 (3), 342–346 (2003)
Article
Google Scholar
Van Loon, J.J.W.A.: Some history and use of the random positioning machine, RPM, in gravity related research. Adv. Space Res. 39(7), 1161–1165 (2007)
Article
Google Scholar
von Sachs, F.G.J.R.: Über Ausschliessung der geotropischen und heliotropischen Krümmungen wärend des Wachsthums. Würzburger Arbeiten 2, 209–225 (1879)
Google Scholar
Wang, H., Li, X., Krause, L., Görög, M., Schüler, O. , Hauslage, J., Hemmersbach, R., Kircher, A., Lasok, H., Haser, T., Rapp, K., Schmidt, J., Yu, X., Pasternak, T., Ausbry-Hivet, D., Tietz, O., Dovzhenko, A., Palme, L., Ditengou, F. A.: 2-D clinostat for simulated microgravity experiements with Arabidopsis seedlings. Micrograv. Sci. Technol. (2015). doi:10.1007/s12217-015-9478-1
Warnke, E., Kopp, S., Wehland, M., Hemmersbach, R., Bauer, J., Pietsch, J., Infanger, M., Grimm, D.: Thyroid cells exposed to simulated microgravity conditions – comparison of the fast rotating clinostat and the Random Positioning Machine. Microgravity Sci. Technol. (2015). doi:10.1007/s12217-015-9456-7
Google Scholar
Wehland, M., Warnke, E., Frett, T., Hemmersbach, R., Hauslage, J., Ma, X., Aleshcheva, G., Pietsch, J., Bauer, J., Grimm, D.: The impact of hypergravity and vibration on gene and protein expression of thyroid cells. Microgravity Sci. Technol. (2015). doi:10.1007/s12217-015-9474-5
Google Scholar
Weilert, M.A., Whitaker, D.L., Maris, H.J., Seidel, G.M.: Magnetic levitation and noncoalescence of liquid helium. Phys. Rev. Lett. 77, 4840–4843 (1996)
Article
Google Scholar
Wuest, S., Richard, S., Walther, I., Furrer, R., Anderegg, R., Sekler, J., Egli, M.: A novel microgravity simulator applicable for three-dimensional cell culturing. Microgravity Sci. Technol. 26(2), 1–12 (2014)
Article
Google Scholar
Wuest, S.L., Richard, S., Kopp, S., Grimm, D., Egli, M.: Simulated microgravity: critical review on the use of random positioning machines for mammalian cell culture. BioMed. Res. Int. (2015). doi:10.1155/2015/971474
Google Scholar