Abstract
The in vitro differentiation of pluripotent stem cells partially recapitulates early in vivo embryonic development. More recently, embryonic development under the influence of microgravity has become a primary focus of space life sciences. In order to integrate the technique of pluripotent stem cell differentiation with simulated microgravity approaches, the 2-D clinostat compatible pipette-based method was experimentally investigated and adapted for investigating stem cell differentiation processes under simulated microgravity conditions. In order to keep residual accelerations as low as possible during clinorotation, while also guaranteeing enough material for further analysis, stem cells were exposed in 1-mL pipettes with a diameter of 3.5 mm. The differentiation of mouse and human pluripotent stem cells inside the pipettes resulted in the formation of embryoid bodies at normal gravity (1 g) after 24 h and 3 days. Differentiation of the mouse pluripotent stem cells on a 2-D pipette-clinostat for 3 days also resulted in the formation of embryoid bodies. Interestingly, the expression of myosin heavy chain was downregulated when cultivation was continued for an additional 7 days at normal gravity. This paper describes the techniques for culturing and differentiation of pluripotent stem cells and exposure to simulated microgravity during culturing or differentiation on a 2-D pipette clinostat. The implementation of these methodologies along with -omics technologies will contribute to understand the mechanisms regulating how microgravity influences early embryonic development.
Similar content being viewed by others
References
Briegleb, W.: Some qualitative and quantitative aspects of the fast-rotating clinostat as a research tool. ASGSB Bull 5(2), 23–30 (1992)
Caiozzo, V.J., Haddad, F., Baker, M.J., Herrick, R.E., Prietto, N., Baldwin, K.M.: Microgravity-induced transformations of myosin isoforms and contractile properties of skeletal muscle. J. Appl. Physiol. 81(1), 123–132 (1996)
Cogoli, M.: The fast rotating clinostat: a history of its use in gravitational biology and a comparison of ground-based and flight experiment results. ASGSB Bull 5(2), 59–67 (1992)
Colleoni, S., Galli, C., Gaspar, J.A., Meganathan, K., Jagtap, S., Hescheler, J., Sachinidis, A., Lazzari, G.: Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol. Sci. 124(2), 370–377 (2011). doi:10.1093/toxsci/kfr245
Crawford-Young, S.J.: Effects of microgravity on cell cytoskeleton and embryogenesis. Int. J. Dev. Biol. 50 (2-3), 183–191 (2006). doi:10.1387/ijdb.052077sc
Doss, M.X., Winkler, J., Chen, S., Hippler-Altenburg, R., Sotiriadou, I., Halbach, M., Pfannkuche, K., Liang, H., Schulz, H., Hummel, O., Hubner, N., Rottscheidt, R., Hescheler, J., Sachinidis, A.: Global transcriptome analysis of murine embryonic stem cell-derived cardiomyocytes. Genome Biol. 8(4), R56 (2007). doi:10.1186/gb-2007-8-4-r56
Eiermann, P., Kopp, S., Hauslage, J., Hemmersbach, R., Gerzer, R., Ivanova, K.: Adaptation of a 2-D clinostat for simulated microgravity experiments with adherent cells. Microgravity Sci. Technol. 25, 153–159 (2013)
Fitts, R.H., Desplanches, D., Romatowski, J.G., Widrick, J.J.: Spaceflight effects on single skeletal muscle fiber function in the rhesus monkey. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279(5), R1546–1557 (2000)
Gabut, M., Samavarchi-Tehrani, P., Wang, X., Slobodeniuc, V., O’Hanlon, D., Sung, H.K., Alvarez, M., Talukder, S., Pan, Q., Mazzoni, E.O., Nedelec, S., Wichterle, H., Woltjen, K., Hughes, T.R., Zandstra, P.W., Nagy, A., Wrana, J.L., Blencowe, B.J.: An alternative splicing switch regulates embryonic stem cell pluripotency and reprogramming. Cell 147(1), 132–146 (2011). doi:doi:10.1016/j.cell.2011.08.023
Gaspar, J.A., Doss, M.X., Hengstler, J.G., Cadenas, C., Hescheler, J., Sachinidis, A.: Unique metabolic features of stem cells, cardiomyocytes, and their progenitors. Circ. Res. 114(8), 1346–1360 (2014). doi:10.1161/CIRCRESAHA.113.302021
Gaspar, J.A., Doss, M.X., Winkler, J., Wagh, V., Hescheler, J., Kolde, R., Vilo, J., Schulz, H., Sachinidis, A.: Gene expression signatures defining fundamental biological processes in pluripotent, early, and late differentiated embryonic stem cells. Stem. Cells Dev. 21(13), 2471–2484 (2012). doi:10.1089/scd.2011.0637
Gualandris-Parisot, L., Husson, D., Bautz, A., Durand, D., Kan, P., Aimar, C., Membre, H., Duprat, A.M., Dournon, C.: Effects of space environment on embryonic growth up to hatching of salamander eggs fertilized and developed during orbital flights. Biol. Sci. Space 16(1), 3–11 (2002)
Harrison, B.C., Allen, D.L., Girten, B., Stodieck, L.S., Kostenuik, P.J., Bateman, T.A., Morony, S., Lacey, D., Leinwand, L.A.: Skeletal muscle adaptations to microgravity exposure in the mouse. J. Appl. Physiol. 95(6), 2462–2470 (2003). doi:10.1152/japplphysiol.00603.2003
Hemmersbach, R., von der Wiesche, M., Seibt, D.: Ground-based experimental platforms in gravitational biology and human physiology. Signal Transduct. 6(6), 381–387 (2006). doi:10.1002/sita.200600105
Herranz, R., Anken, R., Boonstra, J., Braun, M., Christianen, P.C, de Geest, M., Hauslage, J., Hilbig, R., Hill, R.J., Lebert, M., Medina, F.J., Vagt, N., Ullrich, O., van Loon, J.J., Hemmersbach, R.: Ground-based facilities for simulation of microgravity: organism-specific recommendations for their use, and recommended terminology. Astrobiology 13(1), 1–17 (2013). doi:10.1089/ast.2012.0876
Higashibata, A., Szewczyk, N.J., Conley, C.A., Imamizo-Sato, M., Higashitani, A., Ishioka, N.: Decreased expression of myogenic transcription factors and myosin heavy chains in Caenorhabditis elegans muscles developed during spaceflight. J. Exp. Biol. 209(Pt 16), 3209–3218 (2006). doi:10.1242/jeb.02365
Kojima, Y., Sasaki, S., Kubota, Y., Ikeuchi, T., Hayashi, Y., Kohri, K.: Effects of simulated microgravity on mammalian fertilization and preimplantation embryonic development in vitro. Fertil. Steril. 74(6), 1142–1147 (2000). doi:10.1016/S0015-0282(00)01583-1
Krug, A.K., Kolde, R., Gaspar, J.A., Rempel, E., Balmer, N.V., Meganathan, K., Vojnits, K., Baquie, M., Waldmann, T., Ensenat-Waser, R., Jagtap, S., Evans, R.M., Julien, S., Peterson, H., Zagoura, D., Kadereit, S., Gerhard, D., Sotiriadou, I., Heke, M., Natarajan, K., Henry, M., Winkler, J., Marchan, R., Stoppini, L., Bosgra, S., Westerhout, J., Verwei, M., Vilo, J., Kortenkamp, A., Hescheler, J., Hothorn, L., Bremer, S., van Thriel, C., Krause, K.H., Hengstler, J.G., Rahnenfuhrer, J., Leist, M., Sachinidis, A.: Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch. Toxicol. 87(1), 123–143 (2013). doi:10.1007/s00204-012-0967-3
Livak, K.J., Schmittgen, T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Methods (San Diego, Calif.) 25(4), 402–408 (2001). doi:10.1006/meth.2001.1262
Meganathan, K., Jagtap, S., Wagh, V., Winkler, J., Gaspar, J.A., Hildebrand, D., Trusch, M., Lehmann, K., Hescheler, J., Schluter, H., Sachinidis, A.: Identification of thalidomide-specific transcriptomics and proteomics signatures during differentiation of human embryonic stem cells. PLoS One 7(8), e44228 (2012). doi:10.1371/journal.pone.0044228
Meganathan, K., Sotiriadou, I., Natarajan, K., Hescheler, J., Sachinidis, A.: Signaling molecules, transcription growth factors and other regulators revealed from in-vivo and in-vitro models for the regulation of cardiac development. Int. J. Cardiol. 183, 117–128 (2015). doi:DOI10.1016/j.ijcard.2015.01.049
Ronca, A.E.: Studies toward birth and early mammalian development in space. Adv. Space Res. 32(8), 1483–1490 (2003). doi:10.1016/S0273-1177(03)90385-1
Ronca, A.E., Alberts, J.R.: Effects of prenatal spaceflight on vestibular responses in neonatal rats. J. Appl. Physiol. 89(6), 2318–2324 (2000)
Shinde, V., Klima, S., Sureshkumar, P.S., Meganathan, K., Jagtap, S., Rempel, E., Rahnenführer, J., Hengstler, J.G., Waldmann, T., Hescheler, J., Leist, M., Sachinidis, A.: Human pluripotent stem cell based developmental toxicity assays for chemical safety screening and systems biology data generation. e52333 (2015a). doi:10.3791/52333
Shinde, V., Stöber, R., Nemade, H., Sotiriadou, I., Hescheler, J., Hengstler, J., Sachinidis, A.: Transcriptomics of hepatocytes treated with toxicants for investigating molecular mechanisms underlying hepatotoxicity. In: Vinken, M., Rogiers, V. (eds.) Protocols in In Vitro Hepatocyte Research, vol. 1250. Methods in Molecular Biology, pp. 225-240. Springer, New York (2015b)
Thiel, C.S., Hauschild, S., Tauber, S., Paulsen, K., Raig, C., Raem, A., Biskup, J., Gutewort, A., Hurlimann, E., Unverdorben, F., Buttron, I., Lauber, B., Philpot, C., Lier, H., Engelmann, F., Layer, L.E., Ullrich, O.: Identification of reference genes in human myelomonocytic cells for gene expression studies in altered gravity. Biomed. Res. Int. (2015). doi:10.1155/2015/363575
Trouillas, M., Saucourt, C., Guillotin, B., Gauthereau, X., Ding, L., Buchholz, F., Doss, M.X., Sachinidis, A., Hescheler, J., Hummel, O., Huebner, N., Kolde, R., Vilo, J., Schulz, H., Boeuf, H.: Three LIF-dependent signatures and gene clusters with atypical expression profiles, identified by transcriptome studies in mouse ES cells and early derivatives. BMC Genomics. 10, 73 (2009). doi:10.1186/1471-2164-10-73
Wagh, V., Doss, M.X., Sabour, D., Niemann, R., Meganathan, K., Jagtap, S., Gaspar, J.A., Ardestani, M.A., Papadopoulos, S., Gajewski, M., Winkler, J., Hescheler, J., Sachinidis, A.: Fam40b is required for lineage commitment of murine embryonic stem cells. Cell Death Dis. 5, e1320 (2014). doi:10.1038/cddis.2014.273
Wagh, V., Jagtap, S., Meganathan, K., Potta, S.P., Winkler, J., Hescheler, J., Sachinidis, A.: Effect of chemopreventive agents on differentiation of mouse embryonic stem cells. Front. Biosci. (Elite Ed) 4, 156–168 (2012)
Wakayama, S., Kawahara, Y., Li, C., Yamagata, K., Yuge, L., Wakayama, T.: Detrimental effects of microgravity on mouse preimplantation development in vitro. PLoS One 4(8), e6753 (2009). doi:10.1371/journal.pone.0006753
Wang, Y., An, L., Jiang, Y., Hang, H.: Effects of simulated microgravity on embryonic stem cells. PLoS One 6(12), e29214 (2011). doi:10.1371/journal.pone.0029214
Acknowledgments
This work was funded by the European Space Agency, Noordwijk, Netherlands in the frame of the GBF Programm (4000110259 ESA-CORA-GBF)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Shinde, V., Brungs, S., Hescheler, J. et al. Pipette-based Method to Study Embryoid Body Formation Derived from Mouse and Human Pluripotent Stem Cells Partially Recapitulating Early Embryonic Development Under Simulated Microgravity Conditions. Microgravity Sci. Technol. 28, 287–295 (2016). https://doi.org/10.1007/s12217-015-9469-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12217-015-9469-2