Microgravity Science and Technology

, Volume 28, Issue 1, pp 29–39 | Cite as

Control of Convection Patterning and Intensity in Shallow Cavities by Harmonic Vibrations

  • Marcello Lappa


In this article the interplay among different types of flow (i.e. induced by driving forces of a different nature) is presented as a possible and “natural” means to control convection patterning and strength in shallow rectangular cavities of finite extent (A =length/height =4) filled with a low Prandtl number liquid (silicon, Pr =0.01). A variety of results concerning the possible spatial structure of the “mixed” states of steady Buoyant, Marangoni and Vibrational convection are discussed with the express intent of supporting the optimization of future experiments to be performed onboard the International Space Station.


Buoyant Marangoni and vibrational convection Hybrid states Flow control Patterning behaviour 


  1. Ahadi, A.H., Saghir, M.Z.: Quasi steady state effect of micro vibration from two space vehicles on mixture during thermodiffusion experiment. Fluid Dyn. Mater. Process. 8(4), 397–422 (2012)Google Scholar
  2. Batchelor, G. K.: Heat convection and buoyancy effects in fluids. Q. J. R. Met. Soc. 80, 339–358 (1954)CrossRefGoogle Scholar
  3. Ben Hadid, H., Roux, B.: Thermocapillary convection in long horizontal layers of low-Prandtl number melts subject to a horizontal temperature gradient. J. Fluid Mech. 221, 77–103 (1990)CrossRefGoogle Scholar
  4. Birikh, R.V., Briskman, V.A., Chernatynski, V.I., Roux, B.: Conrol of thermocapillary convection in a liquid bridge by high frequency vibrations. Microgravity Q. 3, 23–28 (1993)Google Scholar
  5. Bontoux, P., Roux, B., Schiroky, G. H., Markham, B. L., Rosenberger, F.: Convection in the vertical midplane of a horizontal cylinder. Comparison of two-dimensional approximations with three-dimensional results. Int. J. Heat Mass Transfer 29(2), 227–240 (1986)CrossRefGoogle Scholar
  6. Carotenuto, L., Piccolo, C., Castagnolo, D., Lappa, M., Garcìa-Ruiz J.M.: Experimental observations and numerical modelling of diffusion-driven crystallisation processes. Acta Crystallographica D 58, 1628–1632 (2002)CrossRefGoogle Scholar
  7. Castagnolo, D., Lombardi, S., Albanese, C., Ceriello, A., De Chiara, G., Di Costanzo, G., Lappa, M., Piccolo, C., Scognamiglio, M., Sorrentino, D., Tempesta, S., Beestermoeller, H.J., Cardano, M., Lippi P.: Fluid Science Laboratory on board ISS: Two years of successful operations”, 63rd International Astronautical Congress 2012 (Naples, Italy, 1-5 October 2012), paper number: IAC-12.B6.1.5x15262, 6,2012, Pages 4949-4952 (ISBN: 978-162276979-7) (2012)Google Scholar
  8. Cormack, D. E., Leal, L. G., Imberger, J.: Natural convection in a shallow cavity with differentially heated end walls, Part 1. Asymptotic Theory. J. Fluid Mech. 65, 209–229 (1974)CrossRefzbMATHGoogle Scholar
  9. Gelfgat, A. Yu., Bar-Yoseph, P. Z.: The effect of an external magnetic field on oscillatory instability of convective flows in a rectangular cavity. Phys. Fluids 13(8), 2269–2278 (2001)CrossRefzbMATHGoogle Scholar
  10. Gelfgat, A.Yu: Different modes of rayleigh-benard instability in two- and three-dimensional rectangular enclosures. J. Comput. Phys. 156, 300–324 (1999)CrossRefzbMATHGoogle Scholar
  11. Gelfgat, A.Yu., Bar-Yoseph, P.Z., Yarin, A.L.: Stability of multiple steady states of convection in laterally heated cavities. J. Fluid Mech. 388, 315–334 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  12. Gershuni, G.Z., Lyubimov, D.V.: Thermal vibrational convection. Wiley (1998)Google Scholar
  13. Haslavsky, V., Miroshnichenko, E., Kit, E., Gelfgat, A. Yu: Comparison and a possible source of disagreement between experimental and numerical results in a czochralski model. Fluid Dyn. Mater. Process. 9(3), 209–234 (2013)Google Scholar
  14. Hurle, D.T.J, Jakeman, E., Johnson, J.P.: Convective temperature oscillations in molten gallium. J. Fluid Mech. 64, 565–576 (1974)CrossRefGoogle Scholar
  15. Kozlov, V.G.: Vibrational thermal convection in a cavity executing high-frequency rocking motions. Izv. AN SSSR. Mech. Zhidk. Gasa. 3, 138–144 (1988). Translated: Fluid Dyn., 23, 437–442Google Scholar
  16. Kozlov, V.G., Selin, N.V.: Pendulum thermal vibrational convection in a liquid layer with internal heat generation. Fluid Dyn. Mater. Process. 2(2), 107–117 (2006)Google Scholar
  17. Kuhlmann, H.C., Lappa, M., Melnikov, D., Mukin, R., Muldoon, F.H., Pushkin, D., Shevtsova, V.S., Ueno, I.: The JEREMI-Project on thermocapillary convection in liquid bridges. Part A: Overview of Particle Accumulation Structures. Fluid Dyn. Mater. Process. 10(1), 1–36 (2014)Google Scholar
  18. Lappa, M.: Growth and Mutual Interference of Protein Seeds under reduced gravity conditions. Phys. Fluids 15(4), 1046–1057 (2003a)CrossRefzbMATHGoogle Scholar
  19. Lappa, M.: Three-dimensional numerical simulation of Marangoni flow instabilities in floating zones laterally heated by an equatorial ring. Phys. Fluids 15(3), 776–789 (2003b)CrossRefzbMATHGoogle Scholar
  20. Lappa, M.: Fluids, materials and microgravity: Numerical techniques and insights into the physics. Elsevier Science, Oxford (2004a)Google Scholar
  21. Lappa, M.: Combined effect of volume and gravity on the three-dimensional flow instability in non-cylindrical floating zones heated by an equatorial ring. Phys. Fluids 16(2), 331–343 (2004b)MathSciNetCrossRefzbMATHGoogle Scholar
  22. Lappa, M.: On the nature and structure of possible three-dimensional steady flows in closed and open parallelepipedic and cubical containers under different heating conditions and driving forces. Fluid Dyn. Mater. Process. 1, 1–19 (2005)Google Scholar
  23. Lappa, M.: Secondary and oscillatory gravitational instabilities in canonical three-dimensional models of crystal growth from the melt, Part1: Rayleigh-Bènard systems. Comptes Rendus Mécanique 335, 253–260 (2007). M. Lappa, (2007), “Secondary and oscillatory gravitational instabilities in canonical three-dimensional models of crystal growth from the melt, Part2: Lateral heating and the Hadley circulation”, Comptes Rendus Mécanique, Vol. 335, pp. 261-268.CrossRefGoogle Scholar
  24. Lappa, M.: Thermal convection: Patterns, evolution and stability. John Wiley, Chichester (2009)CrossRefzbMATHGoogle Scholar
  25. Lappa, M.: Rotating thermal flows in natural and industrial processes. John Wiley, Chichester (2012a)CrossRefzbMATHGoogle Scholar
  26. Lappa, M.: Exact solutions for thermal problems: Buoyancy, marangoni, vibrational and magnetic-field-controlled flows. Review of Applied Physics 1(1), 1–14 (2012b)Google Scholar
  27. Lappa, M.: On the existence and multiplicity of one-dimensional solid particle attractors in time-dependent Rayleigh-Bénard convection. Chaos 23(1), 013–105 (2013a). (9 pages)MathSciNetCrossRefGoogle Scholar
  28. Lappa, M.: Assessment of the role of axial vorticity in the formation of Particle Accumulation Structures (PAS) in supercritical Marangoni and hybrid thermocapillary-rotation-driven flows. Phys. Fluids 25(1), 012–101 (2013b). (11 pages)MathSciNetCrossRefGoogle Scholar
  29. Lappa, M.: On the variety of particle accumulation structures under the effect of gjitters. J. Fluid Mech. 726, 160–195 (2013c)MathSciNetCrossRefzbMATHGoogle Scholar
  30. Lappa, M.: Stationary solid particle attractors in standing waves. Phys. Fluids 26(1), 013–305 (2014a). (12 pages)Google Scholar
  31. Lappa, M.: The patterning behaviour and accumulation of spherical particles in a vibrated non-isothermal liquid. Phys. Fluids 26 (2014b)Google Scholar
  32. Lappa, M., Castagnolo, D., Carotenuto, L.: Sensitivity of the non-linear dynamics of Lysozyme ‘Liesegang Rings’ to small asymmetries. Physica A: Statistical Mechanics and its Applications 314(1-4), 623–635 (2002)CrossRefGoogle Scholar
  33. Lappa, M., Piccolo, C., Carotenuto, L.: Mixed buoyant-Marangoni convection due to dissolution of a droplet in a liquid-liquid system with miscibility gap. European Journal of Mechanics/B Fluids 23, 781–794 (2004)CrossRefzbMATHGoogle Scholar
  34. Lappa, M., Yasushiro, S., Imaishi, N.: 3D numerical simulation of on ground Marangoni flow instabilities in liquid bridges of low Prandtl number fluid. Int. J. Num. Meth. Heat Fluid Flow 13(3), 309–340 (2003)CrossRefzbMATHGoogle Scholar
  35. Luijkx, J. M., Platten, J. K.: On the onset of free convection in a rectangular channel. J. Non-Equilibrium Thermodynam. 6, 141–148 (1981)CrossRefzbMATHGoogle Scholar
  36. Lyubimov, D. V., Popov, D. M., Lyubimova, T. P.: Stability of plane-parallel pulsational flow of two miscible fluids under high frequency horizontal vibrations. Microgravity Sci. Technol. 25(4), 231–236 (2013)CrossRefGoogle Scholar
  37. Lyubimova, T., Beysens, D., Gandikota, G., Amiroudine, S.: Vibration effect on a thermal front propagation in a square cavity filled with incompressible fluid. Microgravity Science and Technology 26(1), 51–56 (2014)CrossRefGoogle Scholar
  38. Monti, R., Savino, R.: Microgravity experiment acceleration tolerability on space orbiting laboratories. J. Spacecr. Rocket. 33(5), 707–716 (1996)CrossRefGoogle Scholar
  39. Oueslati, F.S., Bennacer, R., Sammouda, H., El Ganaoui, M.: Analytical and numerical solutions for natural convection in a shallow cavity filled with two immiscible fluids: Shear stress action. Numerical Heat Transfer, Part A: Applications 62(8), 605–623 (2012)CrossRefGoogle Scholar
  40. Parsa, A., Saghir, M.Z.: Fluid flow behavior of a binary mixture under the influence of external disturbances using different density models. Fluid Dyn. Mater. Process. 8(1), 27–50 (2012)MathSciNetGoogle Scholar
  41. Roux, B.: Numerical Simulation of oscillatory convection in low-Pr fluids,a GAMM Workshop, Notes on numerical fluid mechanics, vol. 27. Vieweg (1990)Google Scholar
  42. Savino, R., Monti, R.: Convection induced by residual-g and g-jitters in diffusion experiments. Int. J. Heat Mass Transfer 42(1), 111–126 (1998)CrossRefzbMATHGoogle Scholar
  43. Sekhon, M., Armour, N., Dost, S: Numerical simulation of liquid phase diffusion growth of SiGe single crystals under zero gravity. Fluid Dyn. Mater. Process. 9(4), 331–352 (2013)Google Scholar
  44. Shemirani, M. M., Saghir, M. Z.: An alternative approach to minimize the convection in growing a large diameter single bulk crystal of Si0:25Ge0:75 alloy in a vertical bridgman furnace. Fluid Dyn. Mater. Process. 9(1), 11–22 (2013)Google Scholar
  45. Shevtsova, V., Gaponenko, Y., Kuhlmann, H.C., Lappa, M., Lukasser, M., Matsumoto, S., Mialdun, A., Montanero, J.M., Nishino, K., Ueno, I.: The JEREMI-project on thermocapillary convection in liquid bridges. Part B: Impact of co-axial gas flow. Fluid Dyn. Mater. Process. 10(2), 197–240 (2014)Google Scholar
  46. Shevtsova, V., Mialdun, A., Kawamura, H., Ueno, I., Nishino, K., Lappa, M.: Onset of hydrothermal instability in liquid bridge. Experimental benchmark. Fluid Dyn. Mater. Process. 7(1), 1–28 (2011a)Google Scholar
  47. Shevtsova, V., Mialdun, A., Melnikov, D., Ryzhkov, I., Gaponenko, Y., Saghir, Z., Lyubimova, T., Legros, J. C.: The IVIDIL experiment onboard the ISS: Thermodiffusion in the presence of controlled vibrations. Compt. Rend. Mécaniq. 339(5), 310–317 (2011b)CrossRefGoogle Scholar
  48. Shevtsova, V., Lyubimova, T., Saghir, Z., Melnikov, D., Gaponenko, Y., Sechenyh, V., Legros, J. C., Mialdun, A.: IVIDIL: On-board g-jitters and diffusion controlled phenomena. J. Phys.: Conf. Ser 327 (012031) (2011c)Google Scholar
  49. Simanovskii, I. B., Kabov, O. A.: Nonlinear Convective Oscillations in Two-Layer Systems with Different Aspect Ratios. Microgravity Science and Technology 24(2), 127–137 (2012)CrossRefGoogle Scholar
  50. Skeldon, A. C., Riley, D. C., Cliffe, K. A.: Convection in a low Prandtl number fluid. J. Cryst. Growth 162, 95–106 (1996)CrossRefGoogle Scholar
  51. Trinchero, G., Cardano, M., Pensavalle, E., Bassano, E., Dell’Aversana, P., Lappa, M., Tacconi, M.: The Fluid Science Laboratory on the ISS Columbus module Performances and Operations”, 3rd International Symposium on Physical Sciences in Space ISPS:2007, Nara, Japan, 22-26 (2007)Google Scholar
  52. Winters, K. H.: Oscillatory convection in liquid metals in a horizontal temperature gradient. Int. J. Num. Meth. Eng. 25, 401–414 (1988)CrossRefzbMATHGoogle Scholar
  53. Zhou, X., Huai, X.: Numerical investigation of thermocapillary convection in a liquid layer with free surface. Microgravity Science and Technology 25(6), 335–341 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace EngineeringUniversity of StrathclydeGlasgowUK

Personalised recommendations