Abstract
Cellular response to microgravity is a basic issue in space biological sciences as well as space physiology and medicine. It is crucial to elucidate the mechano-biological coupling mechanisms of various biological organisms, since, from the principle of adaptability, all species evolved on the earth must possess the structure and function that adapts their living environment. As a basic element of an organism, a cell usually undergoes mechanical and chemical remodeling to sense, transmit, transduce, and respond to the alteration of gravitational signals. In the past decades, new computational platforms and experimental methods/techniques/devices are developed to mimic the biological effects of microgravity environment from the viewpoint of biomechanical approaches. Mechanobiology of plant gravisensing in the responses of statolith movements along the gravity vector and the relevant signal transduction and molecular regulatory mechanisms are investigated at gene, transcription, and protein levels. Mechanotransduction of bone or immune cell responses and stem cell development and tissue histogenesis are elucidated under microgravity. In this review, several important issues are briefly discussed. Future issues on gravisensing and mechanotransducing mechanisms are also proposed for ground-based studies as well as space missions.
Similar content being viewed by others
References
Alenghat, F.J., Ingber, D.E.: Mechanotransduction: all signals point to cytoskeleton, matrix, and integrins. Sci. STKE. 2002, 6 (2002)
Ayyaswamy, P. S., Mukundakrishnan, K.: Optimal conditions for simulating microgravity employing NASA designed rotatingwall vessels. Acta Astronautica 60, 397 (2007)
Barjaktarovié, ž., Schütz, W., Madlung, J., Fladerer, C., Nordheim, N., Hampp, R.: Changes in the effective gravitational field strength affect the state of phosphorylation of stress related proteins in callus cultures of Arabidopsis thaliana. J. Exp. Bot. 60, 779 (2009)
Becker, A.L., Souza, G.R.: Using space-based investigation to inform cancer research on earth. Nat. Rev. Cancer. 13, 315 (2013)
Beysens, D., Carotenuto, L., van Loon, J.J.W.A., Zell, M.: Laboratory science with space data. Springer, Berlin (2011)
Blaber, E., Sato, K., Almeida, E.A.: Stem cell health and tissue regeneration in microgravity. Stem Cells Dev. Suppl. 23, 1 (2014)
Blancaflor, E.B., Masson, P.H.: Plant gravitropism, unraveling the ups and downs of a complex process. Plant Physiol. 133, 1677 (2003)
Boonsirichai, K., Guan, C., Chen, R., Masson, P.H.: Root gravitropism: an experimental tool to investigate basic cellular and molecular processes underlying mechanosensing and signal transmission in plants. Annu. Rev. Plant. Biol. 53, 421 (2002)
Daley, G.Q., Scadden, D.T.: Prospects for stem cell-based therapy. Cell 132, 544 (2008)
Di, S.M., Qian, A.R., Qu, L.N., Zhang, W., Wang, Z., Ding, C., Li, Y.H., Ren, H.G., Shang, P.: Graviresponses of osteocytes under altered gravity. Adv. Space Res. 48, 1161 (2011)
Di, S.M, Tian, Z.C., Qian, A.R., Li, J.B, Wu, J.W., Wang, Z., Zhang, D.Y, Yin, D.C., Brandi, M.L., Shang, P.: Large gradient high magnetic field affects FLG29.1 cells differentiation to form osteoclast-like cells. Int. J. Radiat. Biol. 88, 806 (2012)
Discher, D.E., Mooney, D.J., Zandstra, P.W.: Growth factors, matrices, and forces combine and control stem cells. Science 324, 1673 (2009)
Guilak, F., Butler, D.L., Goldstein, S.A., Baaijens, F.P.T.: Biomechanics and mechanobiology in functional tissue engineering. J. Biomech. 47, 1933 (2014)
Han, S.F., Zhao, Y.N., Xiao, Z.F., Han, J., Chen, B., Chen, L., Dai, J.W.: The three-dimensional collagen scaffold improves the stemness of rat bone marrow mesenchymal stem cells. J. Genet. Genomics. 39, 633 (2012)
Herranz, R., Anken, R., Boonstra, J., Braun, M., Christianen, P.C.M, de Geest, M., Hauslage, J., Hilbig, R., Hill, R.J.A., Lebert, M., Medina, F.J., Vagt, N., Ullrich, O., van Loon, J.J.W.A., Hemmersbach R.: Ground-based facilities for simulation of microgravity: Organism-specific recommendations for their use, and recommended terminology. Astrobiology 13, 1 (2013)
Hu, L.F., Qian, A.R., Wang, Y., Di, S.M., Shang, P.: Inhibitory effect of simulated microgravity on differentiating preosteoblasts. Adv. Space Res. 51, 107 (2013a)
Hu, L.F., Li, J.B., Qian, A.R, Wang, F., Shang, P.: Mineralization initiation of MC3T3-E1 preosteoblast is suppressed under simulated microgravity condition. Cell Biol. Int. 39, 4 (2015)
Hu, L.W., Mei, Z.L., Zang, A.P., Chen, H.Y., Dou, X.Y., Cai, W.M.: Microarray analyses and comparisons of upper or lower flanks of rice shoot base preceding gravitropic bending. PLoS ONE 8, e74646 (2013b)
Hu, W.R., Zhao, J.F., Long, M., Zhang, X.W., Liu, Q.S., Hou, M.Y., Kang, Q., Wang, Y.R., Xu, S.H., Kong, W.J., Zhang, H., Wang, S.F., Sun, Y.Q., Hang, H.Y., Huang, Y.P., Cai, W.M., Zhao, Y., Dai, J.W., Zheng, H.Q., Duan, E.K., Wang, J.F.: Space program SJ-10 of microgravity research. Microgravity Sci. Technol. 26, 159 (2014)
Jin, J., Chen, H.Y., Cai, W.M.: Transcriptome analysis of Oryza sativa Calli under microgravity. Microgravity Sci. Technol. (2015). doi:10.1007/s12217-015-9432-2
Kang, Q., Long, M., Zhang, Y.Z., Duan, L., Zhao, J.F., Xu, S.H., Wang, S.F.: Advances of microgravity sciences. Chin. J. Space Sci. 34, 733 (2014)
Kaufmann, I., Feuerecker, M., Salam, A., Schelling, G., Thiel, M., Choukér, A.: Adenosine A2 A receptor modulates the oxidative stress response of primed polymorphonuclear leukocytes after parabolic flight. Hum. Immunol. 72, 547 (2011)
Kaur, I., Simons, E.R., Castro, V.A., Ott, C.M., Pierson, D.L.: Changes in neutrophil functions in astronauts. Brain Behav. Immun. 18, 443 (2004)
Knight, T.: On the direction of the radical and germen during the vegetation of seeds. Philos. Trans. R. Soc 99, 108 (1806)
Koehler, K.R., Mikosz, A.M., Molosh, A.I., Patel, D., Hashino, E.: Generation of inner ear sensory epithelia from pluripotent stem cells in 3D culture. Nature 500, 217 (2013)
Kojima, Y., Sasaki, S., Kubota, Y., Ikeuchi, T., Hayashi, Y., Kohri, K.: Effects of simulated microgravity on mammalian fertilization and preimplantation embryonic development in vitro. Fertil. Steril 74, 1142 (2000)
Lei, X.H., Ning, L.N., Cao, Y.J., Liu, S., Zhang, S.B., Qiu, Z.F., Hu, H.M., Zhang, H.S., Liu, S., Duan, E.K.: NASA-approved rotary bioreactor enhances proliferation of human epidermal stem cells and supports formation of 3D epidermis-like structure. PLoS One 6, e26603 (2011)
Lei, X.H., Deng, Z.L., Zhang, H.S., Zhao, H.S., Zhou, J.X., Liu, S., Chen, Q., Ning, L.N., Cao, Y.J, Wang, X.Y., Zhang, X.D., Duan, E.K.: Rotary suspension culture enhances mesendoderm differentiation of embryonic stem cells through modulation of Wnt/beta-catenin pathway. Stem Cell Rev. 10, 526 (2014)
Leitz, G., Kang, B.H., Schoenwaelder, M.E.A., Staehelin, L.A.: Statolith sedimentation kinetics and force transduction to the cortical endoplasmic reticulum in gravity-sensing Arabidopsis columella cells. Plant Cell 21, 843 (2009)
Li, H., Chen, J., Zhang, Y., Sun, S.J., Tao, Z.L., Long, M.: Effects of oriented substrates on cell morphology, the cell cycle, and the cytoskeleton in Ros 17/2.8 cells. Sci. China Ser. C 53, 1085 (2010)
Li, H.S., Lu, J.Y., Sun, Q., Chen, Y., He, D.C., Liu, M.: Small RNA deep sequencing and the effects of microRNA408 on root gravitropic bending in Arabidopsis. Microgravity Sci. Technol. (2015). doi:10.1007/s12217-015-9444-y
Li, J.B, Wang, L., He, G., Luo, M.Z., Qian, A.R., Shang, P.: Fibronectin is involved in gravity-sensing of osteoblast like cell. J. Jpn. Soc. Microgravity Appl. 28, S36 (2011)
Lu, Y., Ding, C., Wang, J., Shang, P.: An illuminated growth system for the study of Arabidopsis thaliana during diamagnetic levitation by a superconducting magnet. Adv. Space Res. 55, 1 (2015)
Luo, H.Y., Wang, C.Z, Feng, M.F, Zhao, Y.: Microgravity inhibits resting T cell immunity in an exposure time-dependent manner. Int. J. Med. Sci. 11, 87 (2014)
Ma, B.H., Cao, Y.J., Zheng, W.B., Lu, J.R., Kuang, H.B., Lei, X.H., Lü, Y.H., Zhang, T., Duan, E.K.: Real-time micrography of mouse preimplantation embryos in an orbit module on SJ-8 satellite. Microgravity Sci. Tech. 20, 127–136 (2008)
Mazars, C., Brière, C., Grat, S., Pichereaux, C., Rossignol, M., Pereda-Loth, V., Eche, B., Boucheron-Dubuisson, E., Disquet, I.L., Medina, F.J., Graziana, A., Carnero-Diaz, E.: Microgravity induces changes in microsome-associated proteins of Arabidopsis seedlings grown on board the international space station. PLoS One 9, e91814 (2014)
Morita, M.T.: Directional gravity sensing in gravitropism. Annu. Rev. Plant Biol. 61, 705 (2010)
Nabavia, N., Khandanic, A., Camirandd, A., Harrison, R.E.: Effects of microgravity on osteoclast bone resorption and osteoblast cytoskeletal organization and adhesion. Bone 49, 5 (2011)
Ning, L.N., Lei, X.H., Cao, Y.J., Zhang, Y.F., Cao, Z.H., Chen, Q., Duan, E.K.: Effect of short-term hypergravity treatment on mouse 2-cell embryo development. Microgravity Sci. Tech. (2015). doi:10.1007/s12217-015-9446-9
Paul, A.L., Zupanska, A.K., Schultz, E., Rerl, R.J.: Organ-specific remodeling of the Arabidopsis transcriptome in response to space flight. BMC Plant Biol. 13, 112 (2013)
Pecaut, M.J., Simske, S.J., Fleshner, M.: Spaceflight induces changes in splenocyte subpopulations: effectiveness of ground-based models. Am. J. Physiol. Regulatory Integrative Comp. Physiol. 279, R2072 (2000)
Pietsch, J., Ma, X., Wehland, M., Aleshcheva, G., Schwarzwälder, A., Segerer, J., Birlem, M., Horn, A., Bauer, J., Infanger, M., Grimm, D.: Spheriod formation of human thyroid cancer cells in an automated culturing system during the Shenzhou-8 space mission. Biomaterials 34, 7694 (2013)
Plotkin, L.I., Bellido, T.: Beyond gap junctions: Connexin43 and bone cell signaling. Bone 52, 157 (2013)
Qi, B., Zheng, H.Q.: Modulation of root skewing responses by KNAT1 in Arabidopsis thaliana. Plant J. 76, 380 (2013)
Qi, J.Y., Wu, B.B., Feng, S.L., Lü, S.Q., Zhang, X., Huang, Z.W., Hu, Y.C., Li, C.Y., Bai, S.N., Long, M., Jiao, Y.L.: Mechanical regulation of organ asymmetry in leaves (Under review)
Qian, A.R., Di, S.M., Gao, X., Zhang, W., Tian, Z.C., Li, J.B., Hu, L.F., Yang, P.F., Yin, D.C.: Shang, P.: cDNA microarray reveals the alterations of cytoskeleton-related genes in osteoblast under high magneto-gravitational environment. Acta Biochim. Biophys. Sin. 41, 561 (2009a)
Qian, A.R., Hu, L.F., Gao, X., Zhang, W., Di, S.M., Tian, Z.C., Yang, P.F., Yin, D.C., Weng, Y.Y., Shang, P.: Large gradient high magnetic field affects the association of MACF1 with actin and microtubule cytoskeleton. Bioelectromagnetics 30, 545 (2009b)
Qian, A.R., Yang, P.F., Hu, L.F., Zhang, W., Di, S.M., Wang, Z., Han, J., Gao, X., Shang, P.: High magnetic gradient environment causes alterations of cytoskeleton and cytoskeleton-associated genes in human osteoblasts cultured in vitro. Adv. Space Res. 46, 687 (2010)
Qian, A.R., Wang, L., Gao, X., Zhang, W., Hu, L.F., Han, J., Li, J.B., Di, S.M., Shang, P.: Diamagnetic levitation causes changes in the morphology, cytoskeleton, and focal adhesion proteins expression in osteocytes. IEEE Trans. Biomed. Eng. 59, 68 (2012)
Qian, A.R., Yin, D.C., Yang, P.F., Lü, Y., Tian, Z.C., Shang, P.: Application of diamagnetic levitation technology in biological sciences research. Applied Superconductivity. IEEE Trans. Biomed. Eng. 23, 1 (2013a)
Qian, A.R., Gao, X., Zhang, W., Li, J.B., Wang, Y., Di, S.M., Hu, L.F., Shang, P.: Large gradient high magnetic fields affect osteoblast ultrastructure and function by disrupting collagen I or fibronectin/ α β1 integrin. PLoS One 8, e51036 (2013b)
Rodriguez, J. P., Astudillo, P., Rios, S., Pino, A.M.: Involvement of adipogenic potential of human bone marrow mesenchymal stem cells (MSCs) in osteoporosis. Curr. Stem Cell Res. 3, 3 (2008)
Sato, E.M., Hijazi, H., Bennett, M.J., Vissenberg, K., Swarup, R.: New insights into root gravitropic signaling. J. Exp. Bot. 66, 2155 (2015)
Shang, P., Zhang, J., Qian, A.R., Li, J.B., Meng, R., Di, S.M., Hu, L.F., Gu, Z.Z.: Bone cells under microgravity. J. Mech. Med. Biol. 13, 1340006 (2013)
Singh, P., Carraher, C., Schwarzbauer, J.E.: Assembly of fibronectin extracellular matrix. Annu. Rev. Cell Dev. Biol. 26, 397 (2010)
Silverberg, J.L., Noar, R.D., Packer, M.S., Harrison, M. J., Henley, C.L., Cohen, I.: Gerbode, S.J.: 3D imaging and mechanical modeling of helical bucking in Medicago truncatula plant roots. PNAS 109, 16794 (2012)
Sun, Y.L., Chen, Z.H., Chen, X.H., Yin, C., Li, D.J., Ma, X.L., Zhao, F., Zhang, G., Shang, P., Qian, A.R.: Diamagnetic levitation promotes osteoclast differentiation from RAW264.7 cells. IEEE Trans. Biomed. Eng. 62, 3 (2015)
Suozzi, K.C., Wu, X., Fuchs, E.: Spectraplakins: master orchestrators of cytoskeletal dynamics. J. Cell Biol. 197, 465 (2012)
Tan, C., Wang, H., Zhang, Y., Qi, B., Xu, G., Zheng, H.Q.: A proteomic approach to analyzing responses of Arabidopsis thaliana root cells to different gravitational conditions using an agravitropic mutant, pin2 and its wild type. Proteome Sci. 9, 72 (2011)
Toyota, M., Ikeda, N., Sawai-Toyota, S., Kato, T., Gilroy, S., Tasaka, M., Morita, M.T.: Amyloplast displacement is necessary for gravisensing in Arabidopsis shoots as revealed by a centrifuge microscope. Plant J. 76, 648 (2013a)
Toyota, M., Gilrory, S.: Gravitropism and mechanical signaling in plants. Amer. J. Bot. 100, 111 (2013b)
Ulbrich, C., Wehland, M., Pietsch, J., Aleshcheva, G., Wise, P., van Loon, J., Magnusson, N., Infanger, M., Grosse, J., Eilles, C., Sundaresan, A., Grimm, D.: The impact of simulated and real microgravity on bone cells and mesenchymal stem cells. Biomed. Res. Int 2014 (2014)
Vallier, L., Alexander, M., Pedersen, R.A.: Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J. Cell Sci. 118, 4495 (2005)
van Loon, J.J.W.A.: Mechanomics and physicomics in gravisensing. Microgravity Sci. Technol. 21, 159 (2009)
Vanneste, S., Friml, J.: Auxin: A trigger for change in plant development. Cell 136, 1005 (2009)
Wang, Y.X., Shyy, J.Y.J., Chien, S.: Fluorescence proteins, live-cell imaging, and mechanobiology: Seeing is believing. Annu. Rev. Biomed. Eng. 10, 1 (2008)
Wang, C.Z., Luo, H.Y., Zhu, L.N., Yang, F., Chu, Z.L., Tian, H.L., Feng, M.F., Zhao, Y., Shang, P.: Microgravity inhibition of lipopolysaccharide-induced tumor necrosis factor- α expression in macrophage cells. Inflamm. Res. 63, 91 (2014a)
Wang, J.W., Lü, D.Y., Mao, D.B., Long, M.: Mechanomics: An emerging field between biology and biomechanics. Protein Cell 5, 518 (2014b)
Wang, X.Y., Liu, S., Zhao, Q., Li, N., Zhang, H.S., Zhang, X.D., Lei, X.H., Zhao, H.S., Deng, Z.L., Qiao, J.Q., Cao, Y.J., Ning, L.N., Liu, S., Duan, E.K.: Three-dimensional hydrogel scaffolds facilitate in vitro self-renewal of human skin-derived precursors. Acta Biomater. 10, 3177 (2014c)
Wang, C.Z., Li, N., Lü, S.Q., Sun, S.J., Chen, Q., Gao, Y.X., Long, M.: Effects of simulated microgravity on mechanical rolling and adhesion of HL60 cells under shear flow. Microgravity Sci. Technol. (Accepted)
Wei, J.S., Han, J., Zhao, Y.N., Cui, Y., Wang, B., Xiao, Z.F., Chen, B., Dai, J.W.: The importance of three-dimensional scaffold structure on stemness maintenance of mouse embryonic stem cells. Biomaterials 35, 7724 (2014)
Weise, S.E., Kuznetsov, Q.A., Hasenstein, K.H., Kiss, J.Z.: Curvature in Arabidopsis inflorescence stems is limited to the region of amyloplast displacement. Plant Cell Physiol. 41, 702 (2000)
Yang, X., Sun, L.W., Wu, X.T., Wang, X.N., Fan, Y.B.: Effect of simulated microgravity on osteocytes responding to fluid shear stress. Acta Astronautica 84, 237 (2013)
Yin, D.C.: Protein crystallization in a magnetic field. Prog. Cryst. Growth. Ch 61, 1 (2015)
Zhang, J., Ding, C., Shang, P.: Alterations of mineral elements in osteoblast during differentiation under hypo, moderate and high static magnetic fields. Biol. Trace Elem. Res 162, 153 (2014)
Zhang, J., Li, J.B., Xu, H.Y., Yang, P.F., Xie, L., Qian, A.R., Zhao, Y., Shang, P.: Responds of bone cells to microgravity: ground-based research. Microgravity Sci. Technol. (2015a). doi:10.1007/s12217-015-9443-z
Zhang, Y., Wang, L., Xie, J., Zheng, H.Q.: Differential protein expression profiling of Arabidopsis thaliana callus under microgravity on board the Chinese SZ-8 spacecraft. Planta 241, 475 (2015b)
Zhang, Y., Zheng, H.Q.: Changes in plastid and mitochondria protein expression in Arabidopsis thaliana callus on board Chinese spacecraft SZ-8. Microgravity Sci. Technol (2015c). doi:10.1007/s12217-015-9431-3
Zheng, Z., Wang, F., Han, Y.: Glass transitions in quasi-two-dimensional suspensions of colloidal ellipsoids. Phys. Rev. Lett. 107, 065702 (2011)
Zheng, Z., Ni, R., Wang, F., Dijkstra, M., Wang, Y., Han, Y.: Structural signatures of dynamic heterogeneities in monolayers of colloidal ellipsoids. Nat. Commun. 5, 3829 (2014)
Zheng, Z.Y., Zou, J.J., Li, H.H., Xue, S., Wang, Y.R., Le, J.: Microrheological insights into the dynamics of amyloplasts in root gravity-sensing cells. Mol. Plant (2015). doi:10.1016/j.molp.2014.12.021
Acknowledgments
This work was supported by National Key Basic Research Foundation of China grant 2011CB710900. The authors are grateful to their contributions of project co-PIs from Profs./Drs. Weiming Cai, Bin Chen, Li Chen, Yubo Fan, Dacheng He, Jie Le, Min Liu, Xiangdong Luo, Dachuan Yin, and Yong Zhao. We also thank to Dr. Debin Mao and Mr. Chengzhi Wang for their technical assistances.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Long, M., Wang, Y., Zheng, H. et al. Mechano-biological Coupling of Cellular Responses to Microgravity. Microgravity Sci. Technol. 27, 505–514 (2015). https://doi.org/10.1007/s12217-015-9464-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12217-015-9464-7