Abstract
To understand the boiling crisis mechanism, one can take advantage of the slowing down of boiling at high pressures, in the close vicinity of the liquid-vapor critical point of the given fluid. To preserve conventional bubble geometry, such experiments need to be carried out in low gravity. We report here two kinds of saturated boiling experiments. First we discuss the spatial experiments with SF 6 at 46 ∘C. Next we address two ground-based experiments under magnetic gravity compensation with H 2 at 33 K. We compare both kinds of experiments and show their complementarity. The dry spots under vapor bubbles are visualized by using transparent heaters made with metal oxide films. We evidence two regimes of the dry spots growth: the regime of circular dry spots and the regime of chain coalescence of dry spots that immediately precedes the heater dryout. A recent H 2 experiment is shown to bridge the gap between the near-critical and low pressure boiling experiments.
Similar content being viewed by others
References
Charignon, T., Lloveras, P., Chatain, D., Truskinovsky, L., Vives, E., Beysens, D., Nikolayev, V.S.: Criticality in the slowed-down boiling crisis at zero gravity. Phys. Rev. E 91, 053007 (2015). doi:10.1103/PhysRevE.91.053007
Chung, H.J., No, H.C.: A nucleate boiling limitation model for the prediction of pool boiling CHF. Int. J. Heat Mass Transfer 50(15-16), 2944–2951 (2007). doi:10.1016/j.ijheatmasstransfer.2006.12.023
Dhir, V.K.: Boiling heat transfer. Ann. Rev. Fluid Mech. 30, 365–401 (1998). doi:10.1146/annurev.fluid.30.1.365
Garrabos, Y., Lecoutre, C., Beysens, D., Nikolayev, V., Barde, S., Pont, G., Zappoli, B.: Transparent heater for study of the boiling crisis near the vapor-liquid critical point. Acta Astronaut. 66(5-6), 760–768 (2010). doi:10.1016/j.actaastro.2009.08.018
Garrabos, Y., Lecoutre-Chabot, C., Hegseth, J., Nikolayev, V.S., Beysens, D., Delville, J.P.: Gas spreading on a heated wall wetted by liquid. Phys. Rev. E 64 (5), 051602 (2001). doi:10.1103/PhysRevE.64.051602
Gong, S., Ma, W., Gu, H.: An experimental investigation on bubble dynamics and boiling crisis in liquid films. Int. J. Heat Mass Transfer 79, 694–703 (2014). doi:10.1016/j.ijheatmasstransfer.2014.08.065
Janeček, V., Nikolayev, V.S.: Apparent-contact-angle model at partial wetting and evaporation: Impact of surface forces. Phys. Rev. E 87, 012404 (2013). doi:10.1103/PhysRevE.87.012404
Janeček, V., Nikolayev, V.S.: Triggering the boiling crisis: a study of the dry spot spreading mechanism. Interfacial Phenomena and Heat Transfer 2 (4), 363–383 (2014). doi:10.1615/InterfacPhenomHeatTransfer.2015012273
Jung, J., Kim, S.J., Kim, J.: Observations of the critical heat flux process during pool boiling of FC-72. J. Heat Transfer 136(4), 041501 (2014). doi:10.1115/1.4025697
Kandlikar, S.G.: A theoretical model to predict pool boiling CHF incorporating effects of contact angle and orientation. J. Heat Transfer 123(6), 1071–1079 (2001). doi:10.1115/1.1409265
Kandlikar, S.G., Steinke, M.E.: Contact angles and interface behavior during rapid evaporation of liquid on a heated surface. Int. J. Heat Mass Transfer 45, 3771–3780 (2002). doi:10.1016/S0017-9310(02)00090-X
Kannengieser, O., Bergez, W., Colin, C.: Boiling on an isolated nucleation site close to CHF conditions. In: Proceedings of 15th Int. Heat Transfer Conf. Kyoto, Japan (2014). Paper IHTC15-8856
Lecoutre, C., Garrabos, Y., Beysens, D., Nikolayev, V., Hahn, I.: Boiling phenomena in near-critical SF6 observed in weightlessness. Acta Astronaut. 100, 22–29 (2014). doi:10.1016/j.actaastro.2014.03.012
Lloveras, P., Salvat-Pujol, F., Truskinovsky, L., Vives, E.: Boiling crisis as a critical phenomenon. Phys. Rev. Lett 108, 215701 (2012). doi:10.1103/PhysRevLett.108.215701
Nikolayev, V., Chatain, D., Beysens, D., Pichavant, G.: Magnetic gravity compensation. Microgravity Sci. Technol. 23(2), 113–122 (2011). doi:10.1007/s12217-010-9217-6
Nikolayev, V.S.: Dynamics of the triple contact line on a nonisothermal heater at partial wetting. Phys. Fluids 22(8), 082105 (2010). doi:10.1063/1.3483558
Nikolayev, V.S., Beysens, D.A.: Boiling crisis and non-equilibrium drying transition. Europhys. Lett 47(3), 345–351 (1999). doi:10.1209/epl/i1999-00395-x
Nikolayev, V.S., Beysens, D.A., Lagier, G.L., Hegseth, J.: Growth of a dry spot under a vapor bubble at high heat flux and high pressure. Int. J. Heat Mass Transfer 44(18), 3499–3511 (2001). doi:10.1016/S0017-9310(01)00024-2
Nikolayev, V.S., Chatain, D., Garrabos, Y., Beysens, D.: Experimental evidence of the vapor recoil mechanism in the boiling crisis. Phys. Rev. Lett 184503, 97 (2006). doi:10.1103/PhysRevLett.97.184503
Nukiyama, S.: The maximum and minimum values of the heat Q transmitted from metal to boiling water under atmospheric pressure. J. Soc. Mech. Eng. Jpn. 37, 367–374 (1934). translated in Int. J. Heat Mass Transfer 9, 1419–1433 (1966)
Straub, J.: Boiling heat transfer and bubble dynamics in microgravity. Adv. Heat Transfer 35, 57–172 (2001). doi:10.1016/S0065-2717(01)80020-4
Theofanous, T.G., Dinh, T.N., Tu, J.P., Dinh, A.T.: The boiling crisis phenomenon. Part II: Dryout dynamics and burnout. Exp. Thermal Fluid Sci. 26, 793–810 (2002). doi:10.1016/S0894-1777(02)00193-0
Yagov, V.V.: Is a crisis in pool boiling actually a hydrodynamic phenomenon. Int. J. Heat Mass Transfer 73, 265–273 (2014). doi:10.1016/j.ijheatmasstransfer.2014.01.076
Acknowledgments
The financial support of CNES within the fundamental microgravity research program and two EMFL grants that covered usage of the LNCMI magnet facility are acknowledged. The authors are grateful to J. Chartier and P. Bonnay of SBT for the help with the development and technical support of the magnetic gravity compensation experiments and to E. de Malmazet for the initial design of the LHYLA cell. We acknowledge the support of the LNCMI, member of the European Magnetic Field Laboratory (EMFL). We thank the whole CNES-DECLIC team and in particular G. Pont for their enthusiastic and helpful involvement in this work.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Nikolayev, V., Garrabos, Y., Lecoutre, C. et al. Boiling Crisis Dynamics: Low Gravity Experiments at High Pressure. Microgravity Sci. Technol. 27, 253–260 (2015). https://doi.org/10.1007/s12217-015-9447-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12217-015-9447-8