Responds of Bone Cells to Microgravity: Ground-Based Research

Abstract

Severe loss of bone occurs due to long-duration spaceflight. Mechanical loading stimulates bone formation, while bone degradation happens under mechanical unloading. Bone remodeling is a dynamic process in which bone formation and bone resorption are tightly coupled. Increased bone resorption and decreased bone formation caused by reduced mechanical loading, generally result in disrupted bone remodeling. Bone remodeling is orchestrated by multiple bone cells including osteoblast, osteocyte, osteoclast and mesenchymal stem cell. It is yet not clear that how these bone cells sense altered gravity, translate physical stimulus into biochemical signals, and then regulate themselves structurally and functionally. In this paper, studies elucidating the bioeffects of microgravity on bone cells (osteoblast, osteocyte, osteoclast, mesenchymal stem cell) using various platforms including spaceflight and ground-based simulated microgravity were summarized. Promising gravity-sensitive signaling pathways and protein molecules were proposed.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. Aguirre, J., Buttery, L., O’Shaughnessy, M., Afzal, F., Fernandez de Marticorena, I., Hukkanen, M., Huang, P., MacIntyre, I., Polak, J.: Endothelial nitric oxide synthase gene-deficient mice demonstrate marked retardation in postnatal bone formation, reduced bone volume, and defects in osteoblast maturation and activity. Am. J. Pathol. 158(1), 247–257 (2001)

    Article  Google Scholar 

  2. Alenghat, F.J., Ingber, D.E.: Mechanotransduction: all signals point to cytoskeleton, matrix, and integrins. Sci. STKE. 2002(119), pe6 (2002)

    Google Scholar 

  3. Arasapam, G., Scherer, M., Cool, J.C., Foster, B.K., Xian, C.J.: Roles of COX-2 and iNOS in the bony repair of the injured growth plate cartilage. J. Cell Biochem. 99(2), 450–461 (2006)

    Article  Google Scholar 

  4. Arfat, Y., Xiao, W., Iftikhar, S., Zhao, F., Li, D., Sun, Y., Zhang, G., Shang, P., Qian, A.: Physiological effects of microgravity on bone cells. Calcif. Tissue Int. 94(6), 569–579 (2014)

    Article  Google Scholar 

  5. Baek, K., Bloomfield, S.A.: Beta-adrenergic blockade and leptin replacement effectively mitigate disuse bone loss. J. Bone Miner. Res. 24(5), 792–799 (2009)

    Article  Google Scholar 

  6. Baldik, Y., Diwan, A.D., Appleyard, R.C., Fang, Z.M., Wang, Y., Murrell, G.A.: Deletion of iNOS gene impairs mouse fracture healing. Bone 37(1), 32–36 (2005)

    Article  Google Scholar 

  7. Baneyx, G., Baugh, L., Vogel, V.: Fibronectin extension and unfolding within cell matrix fibrils controlled by cytoskeletal tension. Proc. Natl. Acad. Sci. U. S. A. 99(8), 5139–5143 (2002)

    Article  Google Scholar 

  8. Batra, N., Kar, R., Jiang, J.X.: Gap junctions and hemichannels in signal transmission, function and development of bone. Biochim. Biophys. Acta. 1818(8), 1909–1918 (2012)

    Article  Google Scholar 

  9. Bernier, G., Mathieu, M., De Repentigny, Y., Vidal, S.M., Kothary, R.: Cloning and characterization of mouse ACF7, a novel member of the dystonin subfamily of actin binding proteins. Genomics 38(1), 19–29 (1996)

    Article  Google Scholar 

  10. Blaber, E.A., Dvorochkin, N., Torres, M.L., Yousuf, R., Burns, B.P., Globus, R.K., Almeida, E.A.: Mechanical unloading of bone in microgravity reduces mesenchymal and hematopoietic stem cell-mediated tissue regeneration. Stem Cell Res. 13(2), 181–201 (2014)

    Article  Google Scholar 

  11. Bonewald, L.F.: The amazing osteocyte. J. Bone Miner. Res. 26(2), 229–238 (2011)

    Article  Google Scholar 

  12. Borst, A.G., van Loon, J.W.A.: Technology and developments for the random positioning machine, RPM. Microgravity Sci. Technol. 21(4), 287–292 (2009)

    Article  Google Scholar 

  13. Carmeliet, G., Nys, G., Bouillon, R.: Microgravity reduces the differentiation of human osteoblastic MG-63 cells. J. Bone Miner. Res. 12(5), 786–794 (1997)

    Article  Google Scholar 

  14. Carmeliet, G., Nys, G., Stockmans, I., Bouillon, R.: Gene expression related to the differentiation of osteoblastic cells is altered by microgravity. Bone 22(5, Suppl), 139S–143S (1998)

    Article  Google Scholar 

  15. Cavanagh, P.R., Licata, A.A., Rice, A.J.: Exercise and pharmacological countermeasures for bone loss during long-duration space flight. Gravit. Space Biol. Bull. 18(2), 39–58 (2005)

    Google Scholar 

  16. Dallas, S.L., Prideaux, M., Bonewald, L.F.: The osteocyte: an endocrine cell …and more. Endocr. Rev. 34(5), 658–690 (2013)

    Article  Google Scholar 

  17. Di, S., Meng, R., Qian, A., Tian, Z., Li, J., Zhang, R., Shang, P.: Impact of osteoclast precursors subjected to random positioning machine on osteoblasts. J. Mech. Med. Biol. 12(04), 1250074 (2012a)

    Article  Google Scholar 

  18. Di, S., Qian, A., Qu, L., Zhang, W., Wang, Z., Ding, C., Li, Y., Ren, H., Shang, P.: Graviresponses of osteocytes under altered gravity. Adv. Space Res. 48(6), 1161–1166 (2011)

    Article  Google Scholar 

  19. Di, S., Tian, Z., Gao, X., Qian, A., Brandi, M.L., Shang, P.: Promotion of simulated microgravity by random positioning machine on proliferation and differentiation of human preosteoclastic cells. Space Med. Med. Eng. 25(1), 13–17 (2012b)

    Google Scholar 

  20. Di, S., Tian, Z., Qian, A., Li, J., Wu, J., Wang, Z., Zhang, D., Yin, D., Brandi, M.L., Shang, P.: Large gradient high magnetic field affects FLG29.1 cells differentiation to form osteoclast-like cells. Int. J. Radiat. Biol. 88(11), 806–813 (2012c)

    Article  Google Scholar 

  21. Dierkes, C., Kreisel, M., Schulz, A., Steinmeyer, J., Wolff, J.-C., Fink, L.: Catabolic properties of microdissected human endosteal bone lining cells. Calcif. Tissue Int. 84(2), 146–155 (2009)

    Article  Google Scholar 

  22. Everts, V., Delaissé, J.M., Korper, W., Jansen, D.C., Tigchelaar-Gutter, W., Saftig, P., Beertsen, W.: The bone lining cell: its role in cleaning Howship’s lacunae and initiating bone formation. J. Bone Miner. Res. 17(1), 77–90 (2002)

    Article  Google Scholar 

  23. Feng, X., McDonald, J.M.: Disorders of bone remodeling. Annu. Rev. Pathol. 6, 121–145 (2011)

    Article  Google Scholar 

  24. Guignandon, A., Lafage-Proust, M.-H., Usson, Y., Laroche, N., Caillot-Augusseau, A., Alexandre, C., Vico, L.: Cell cycling determines integrin-mediated adhesion in osteoblastic ROS 17/2.8 cells exposed to space-related conditions. FASEB J. 15(11), 2036–2038 (2001)

    Google Scholar 

  25. Holick, H.K.: Microgravity-induced bone loss–will it limit human space exploration? Lancet 355(9215), 1569–1570 (2000)

    Article  Google Scholar 

  26. Hu, L., Li, R., Su, P., Arfat, Y., Zhang, G., Shang, P., Qian, A.: Response and adaptation of bone cells to simulated microgravity. Acta Astronaut. 104(1), 396–408 (2014a)

    Article  Google Scholar 

  27. Hu, L., Li, J., Qian, A., Wang, F., Shang, P.: Mineralization initiation of MC3T3-E1 preosteoblast is suppressed under simulated microgravity condition. Cell Biol. Int. (2014b). doi:10.1002/cbin.10391

  28. Hu, L., Qian, A., Li, D., Li, J., Shang, P.: The response to high magneto-gravitational environment of different differentiating-stage osteoblasts. Chin. J. Cell Biol. 35(7), 950–957 (2013a)

    Google Scholar 

  29. Hu, L., Qian, A., Wang, Y., Di, S., Shang, P.: Inhibitory effect of simulated microgravity on differentiating preosteoblasts. Adv. Space Res. 51(1), 107–114 (2013b)

    Article  Google Scholar 

  30. Hughes-Fulford, M.: Changes in gene expression and signal transduction in microgravity. J. Gravit. Physiol. 8(1), 1–4 (2001)

    Google Scholar 

  31. Hughes-Fulford, M., Lewis, M.: Effects of microgravity on osteoblast growth activation. Exp. Cell Res. 224 (1), 103–109 (1996)

    Article  Google Scholar 

  32. Hughes-Fulford, M., Rodenacker, K., Jvtting, U.: Reduction of anabolic signals and alteration of osteoblast nuclear morphology in microgravity. J. Cell Biochem. 99(2), 435–449 (2006)

    Article  Google Scholar 

  33. Ingber, D.E.: How cells (might) sense microgravity. FASEB J. 13(9001), 3–15 (1999)

    Google Scholar 

  34. Jessop, H.L., Rawlinson, S.C., Pitsillides, A.A., Lanyon, L.E.: Mechanical strain and fluid movement both activate extracellular regulated kinase (ERK) in osteoblast-like cells but via different signaling pathways. Bone 31(1), 186–194 (2002)

    Article  Google Scholar 

  35. Kacena, M., Todd, P., Landis, W.: Osteoblasts subjected to spaceflight and simulated space shuttle launch conditions. In Vitro Cell Dev. Biol. Anim. 39(10), 454–459 (2003)

    Article  Google Scholar 

  36. Katz, S., Boland, R., Santillán, G.: Modulation of ERK 1/2 and p38 MAPK signaling pathways by ATP in osteoblasts: Involvement of mechanical stress-activated calcium influx, PKC and Src activation. Int. J. Biochem. Cell Biol. 38(12), 2082–2091 (2006)

    Article  Google Scholar 

  37. Kim, S.W., Pajevic, P.D., Selig, M., Barry, K.J., Yang, J.Y., Shin, C.S., Baek, W.Y., Kim, J.E., Kronenberg, H.M.: Intermittent parathyroid hormone administration converts quiescent lining cells to active osteoblasts. J. Bone Miner. Res. 27(10), 2075–2084 (2012)

    Article  Google Scholar 

  38. Kodama, A., Karakesisoglou, I., Wong, E., Vaezi, A., Fuchs, E.: ACF7: an essential integrator of microtubule dynamics. Cell 115(3), 343–354 (2003)

    Article  Google Scholar 

  39. Kondo, H., Nifuji, A., Takeda, S., Ezura, Y., Rittling, S.R., Denhardt, D.T., Nakashima, K., Karsenty, G., Noda, M.: Unloading induces osteoblastic cell suppression and osteoclastic cell activation to lead to bone loss via sympathetic nervous system. J. Biol. Chem. 280(34), 30192–30200 (2005)

    Article  Google Scholar 

  40. Landis, W.J., Hodgens, K.J., Block, D., Toma, C.D., Gerstenfeld, L.C.: Spaceflight effects on cultured embryonic chick bone cells. J. Bone Miner. Res. 15(6), 1099–1112 (2000)

    Article  Google Scholar 

  41. LeBlanc, A., Schneider, V., Shackelford, L., West, S., Oganov, V., Bakulin, A., Voronin, L.: Bone mineral and lean tissue loss after long duration space flight. J. Musculoskelet Neuronal. Interact. 1(2), 157–160 (2000)

    Google Scholar 

  42. Li, J., Wang, L., He, G., Luo, M., Qian, A., Shang, P.: Fibronectin is involved in gravity-sensing of osteoblast like cell. J. Jpn. Soc. Microgravity Appl. 28(2), S36–S40 (2011)

    Google Scholar 

  43. Lloyd, S.A., Lewis, G.S., Zhang, Y., Paul, E.M., Donahue, H.J.: Connexin 43 deficiency attenuates loss of trabecular bone and prevents suppression of cortical bone formation during unloading. J. Bone Miner. Res. 27(11), 2359–2372 (2012)

    Article  Google Scholar 

  44. Loiselle, A.E., Jiang, J.X., Donahue, H.J.: Gap junction and hemichannel functions in osteocytes. Bone 54(2), 205–212 (2013)

    Article  Google Scholar 

  45. Luo, M., Yang, Z., Li, J., Xu, H., Li, S., Zhang, W., Qian, A., Shang, P.: Calcium influx through stretch-activated channels mediates microfilament reorganization in osteoblasts under simulated weightlessness. Adv. Space Res. 51(11), 2058–2068 (2013)

    Article  Google Scholar 

  46. Macho, L., Kvetnansky, R., Fickova, M., Popova, I.A., Grigoriev, A.: Effects of exposure to space flight on endocrine regulations in experimental animals. Endocr. Regul. 5(2), 101–114 (2001)

    Google Scholar 

  47. Maniotis, A.J., Chen, C.S., Ingber, D.E.: Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc. Natl. Acad. Sci. U. S. A. 94(3), 849–854 (1997)

    Article  Google Scholar 

  48. Mano, T., Nishimura, N., Iwase, S.: Sympathetic neural influence on bone metabolism in microgravity (Review). Acta Physiol. Hung. 97(4), 354–61 (2010)

    Article  Google Scholar 

  49. Matsushita, T., Chan, Y.Y., Kawanami, A., Balmes, G., Landreth, G.E., Murakami, S.: Extracellular signal-regulated kinase 1 (ERK1) and ERK2 play essential roles in osteoblast differentiation and in supporting osteoclastogenesis. Mol. Cell Biol. 29(21), 5843–5857 (2009)

    Article  Google Scholar 

  50. Meng, R., Xu, H., Di, S., Shi, D., Qian, A., Wang, J., Shang, P.: Human mesenchymal stem cells are sensitive to abnormal gravity and exhibit classic apoptotic features. Acta Biochim. Biophys. Sin. (Shanghai) 43 (2), 133–142 (2011)

    Article  Google Scholar 

  51. Nabavi, N., Khandani, A., Camirand, A., Harrison, R.E.: Effects of microgravity on osteoclast bone resorption and osteoblast cytoskeletal organization and adhesion. Bone 49(5), 965–974 (2011)

    Article  Google Scholar 

  52. Nilforoushan, D., Gramoun, A., Glogauer, M., Manolson, M.F.: Nitric oxide enhances osteoclastogenesis possibly by mediating cell fusion. Nitric Oxide 21(1), 27–36 (2009)

    Article  Google Scholar 

  53. Plotkin, L.I., Bellido, T.: Beyond gap junctions: Connexin43 and bone cell signaling. Bone 52(1), 157–166 (2013)

    Article  Google Scholar 

  54. Qian, A., Di, S., Gao, X., Zhang, W., Tian, Z., Li, J., Hu, L., Yang, P., Yin, D., Shang, P.: cDNA microarray reveals the alterations of cytoskeleton-related genes in osteoblast under high magneto-gravitational environment. Acta Biochim. Biophys. Sin. (Shanghai) 41(7), 561–577 (2009a)

    Article  Google Scholar 

  55. Qian, A., Hu, L., Gao, X., Zhang, W., Di, S., Tian, Z., Yang, P., Yin, D., Weng, Y., Shang, P.: Large gradient high magnetic field affects the association of MACF1 with actin and microtubule cytoskeleton. Bioelectromagnetics 30(7), 545–555 (2009b)

    Article  Google Scholar 

  56. Qian, A., Yin, D., Yang, P., Lv, Y., Tian, Z., Shang, P.: Application of diamagnetic levitation technology in biological sciences research. IEEE Trans. Appl. Supercond. 23(1), 3600305 (2013a)

    Article  Google Scholar 

  57. Qian, A., Gao, X., Zhang, W., Li, J., Wang, Y., Di, S., Hu, L., Shang, P.: Large gradient high magnetic fields affect osteoblast ultrastructure and function by disrupting collagen I or fibronectin/ a ß1 integrin. PLoS ONE 8(1), e51036 (2013b)

    Article  Google Scholar 

  58. Qian, A., Li, D., Han, J., Gao, X., Di, S., Zhang, W., Hu, L., Peng, S.: Fractal dimension as a measure of altered actin cytoskeleton in MC3T3-E1 cells under simulated microgravity using 3-D/2-D clinostats. IEEE Trans. Biomed. Eng. 59(5), 1374–1380 (2012a)

    Article  Google Scholar 

  59. Qian, A., Wang, L., Gao, X., Zhang, W., Hu, L., Han, J., Li, J., Di, S., Shang, P.: Diamagnetic levitation causes changes in the morphology, cytoskeleton, and focal adhesion proteins expression in osteocytes. IEEE Trans. Biomed. Eng. 59(1), 68–77 (2012b)

    Article  Google Scholar 

  60. Qian, A., Yang, P., Hu, L., Zhang, W., Di, S., Wang, Z., Han, J., Gao, X., Shang, P.: High magnetic gradient environment causes alterations of cytoskeleton and cytoskeleton-associated genes in human osteoblasts cultured in vitro. Adv. Space Res. 46(6), 687–700 (2010)

    Article  Google Scholar 

  61. Qian, A., Zhang, W., Weng, Y., Tian, Z., Di, S., Yang, P., Yin, D., Hu, L., Wang, Z., Xu, H., Shang, P.: Gravitational environment produced by a superconducting magnet affects osteoblast morphology and functions. Acta Astronaut. 63(7–10), 929–946 (2008)

    Article  Google Scholar 

  62. Raggatt, L.J., Partridge, N.C.: Cellular and molecular mechanisms of bone remodeling. J. Biol. Chem. 285 (33), 25103–25108 (2010)

    Article  Google Scholar 

  63. Shang, P., Zhang, J., Qian, A., Li, J., Meng, R., Di, S., Hu, L., Gu, Z.: Bone cells under microgravity. J. Mech. Med. Biol. 13(05), 1340006 (2013)

    Article  Google Scholar 

  64. Shi, D., Meng, R., Deng, W., Ding, W., Zheng, Q., Yuan, W., Liu, L., Zong, C., Shang, P., Wang, J.: Effects of microgravity modeled by large gradient high magnetic field on the osteogenic initiation of human mesenchymal stem cells. Stem Cell Rev. 6(4), 567–578 (2010)

    Article  Google Scholar 

  65. Sibonga, J.D., Evans, H.J., Sung, H.G., Spector, E.R., Lang, T.F., Oganov, V.S., Bakulin, A.V., Shackelford, L.C., LeBlanc, A.D.: Recovery of spaceflight-induced bone loss: Bone mineral density after long-duration missions as fitted with an exponential function. Bone 41(6), 973–978 (2007)

    Article  Google Scholar 

  66. Singh, P., Carraher, C., Schwarzbauer, J.E.: Assembly of fibronectin extracellular matrix. Annu. Rev. Cell Dev. Biol. 26, 397–419 (2010)

    Article  Google Scholar 

  67. Sun, Y., Chen, Z., Chen, X., Yin, C., Li, D., Ma, X., Zhao, F., Zhang, G., Shang, P., Qian, A.: Diamagnetic levitation promotes osteoclast differentiation from RAW264.7 cells. IEEE Trans. Biomed. Eng. (2014). doi:10.1109/TBME.2014.2370039

  68. Suozzi, K.C., Wu, X., Fuchs, E.: Spectraplakins: master orchestrators of cytoskeletal dynamics. J. Cell Biol. 197(4), 465–475 (2012)

    Article  Google Scholar 

  69. Takeda, S., Elefteriou, F., Levasseur, R., Liu, X., Zhao, L., Parker, K.L., Armstrong, D., Ducy, P., Karsenty, G.: Leptin regulates bone formation via the sympathetic nervous system. Cell 111(3), 305–317 (2002)

    Article  Google Scholar 

  70. Tamma, R., Colaianni, G., Camerino, C., Di Benedetto, A., Greco, G., Strippoli, M., Vergari, R., Grano, A., Mancini, L., Mori, G., Colucci, S., Grano, M., Zallone, A.: Microgravity during spaceflight directly affects in vitro osteoclastogenesis and bone resorption. FASEB J. 23(8), 2549–2554 (2009)

    Article  Google Scholar 

  71. van’t Hof, R.J., Armour, K.J., Smith, L.M., Armour, K.E., Wei, X.Q., Liew, F.Y., Ralston, S.H.: Requirement of the inducible nitric oxide synthase pathway for IL-1-induced osteoclastic bone resorption. Proc. Natl. Acad. Sci. U. S. A. 97(14), 7993–7998 (2000)

    Article  Google Scholar 

  72. Vico, L., Lafage-Proust, M.H., Alexandre, C.: Effects of gravitational changes on the bone system in vitro and in vivo. Bone 22(5 Suppl), 95S–100S (1998)

    Article  Google Scholar 

  73. Wimalawansa, S.J.: Nitric oxide and bone. Ann. N. Y. Acad. Sci. 1192(1), 391–403 (2010)

    Article  Google Scholar 

  74. Wu, X., Kodama, A., Fuchs, E.: ACF7 regulates cytoskeletal-focal adhesion dynamics and migration and has ATPase activity. Cell 135(1), 137–148 (2008)

    Article  Google Scholar 

  75. Wuest, S.L., Richard, S., Kopp, S., Grimm, D., Egli, M.: Simulated microgravity: critical review on the use of random positioning machines for mammalian cell culture. Biomed. Res. Int. 2014, 971474 (2014)

    Google Scholar 

  76. Xu, H., Gu, S., Riquelme, M.A., Burra, S., Callaway, D., Cheng, H., Guda, T., Schmitz, J., Fajardo, R.J., Werner, S.L., Zhao, H., Shang, P., Johnson, M.L., Bonewald, L.F., Jiang, J.X.: Connexin 43 channels are essential for normal bone structure and osteocyte viability. J. Bone Miner. Res. (2014). doi:10.1002/jbmr.2374

  77. Xu, H., Wu, J., Weng, Y., Zhang, J., Shang, P.: Two-dimensional clinorotation influences cellular morphology, cytoskeleton and secretion of MLO-Y4 osteocyte-like cells. Biologia 67(1), 255–262 (2012a)

    Article  Google Scholar 

  78. Xu, H., Zhang, J., Wu, J., Guan, Y., Weng, Y., Shang, P.: Oscillatory fluid flow elicits changes in morphology, cytoskeleton and integrin-associated molecules in MLO-Y4 cells, but not in MC3T3-E1 cells. Biol. Res. 45, 163–169 (2012b)

    Article  Google Scholar 

  79. Yang, X., Sun, L., Wu, X., Wang, X., Fan, Y.: Effect of simulated microgravity on osteocytes responding to fluid shear stress. Acta Astronaut. 84, 237–243 (2013)

    Article  Google Scholar 

  80. Zhang, J., Ding, C., Ren, L., Zhou, Y., Shang, P.: The effects of static magnetic fields on bone. Prog. Biophys. Mol. Biol. 114(3), 146–152 (2014a)

    Article  Google Scholar 

  81. Zhang, J., Ding, C., Shang, P.: Alterations of mineral elements in osteoblast during differentiation under hypo, moderate and high static magnetic fields. Biol. Trace Elem. Res. 162(1-3), 153–157 (2014b)

    Article  Google Scholar 

  82. Zheng, H., Yu, X., Collin-Osdoby, P., Osdoby, P.: RANKL stimulates inducible nitric-oxide synthase expression and nitric oxide production in developing osteoclasts. An autocrine negative feedback mechanism triggered by RANKL-induced interferon-beta via NF-kappaB that restrains osteoclastogenesis and bone resorption. J. Biol. Chem. 281(23), 15809–15820 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Basic Research Program of China (2011CB710903), National Natural Science Foundation of China (51477141, 81472090, 31100667), and Specialized Research Fund for the Doctoral Program of Higher Education of China (20126102110055), and the Fundamental Research Funds for the Central Universities of China (3102014KYJD020, 3102014ZD0045).

Conflict of interests

The authors declare that they have no conflict of interest.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yong Zhao or Peng Shang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Li, J., Xu, H. et al. Responds of Bone Cells to Microgravity: Ground-Based Research. Microgravity Sci. Technol. 27, 455–464 (2015). https://doi.org/10.1007/s12217-015-9443-z

Download citation

Keywords

  • Simulated microgravity
  • Clinostat
  • Diamagnetic levitation
  • Spaceflight osteopenia
  • Bone cells
  • Bone remodeling