Skip to main content
Log in

Transcriptome Analysis of Oryza sativa Calli Under Microgravity

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

The transcriptome of Oryza sativacalli was analyzed on board the Chinese spaceship “Shenzhou 8” to study the effects of microgravity on plant signal transduction and secondary metabolism (as one of the experiments with SIMBOX on Shenzhou 8). Calli of Oryza sativa were pre-cultured for 4 days on ground and then loaded into the stationary platform or the rotating platform of a biological incubator, called SIMBOX, to grow in space under microgravity conditions or 1g-conditions, respectively. The calli were fixed by RNAlater after grew 324 h under microgravity. After 17 days, Shenzhou 8 returned to Earth carrying SIMBOX. Oryza sativa calli were recovered, and the RNA was extracted for transcriptome analysis. After comparing 1 gspaceflight controls-inflight controls with 1 g-ground controls, 157 probe sets with different expression levels (fold change ≥2, p<0.05) were identified. When comparing spaceflight controls to 1 g-ground controls and to 1 g-inflight controls, 678 probe sets with different expression levels (fold change ≥2, p<0.05) were identified. The fact that the same 678 probe sets were identified in these two comparisons suggests that transcription was affected under microgravity conditions. MapMan analysis was used to classify 627 microgravity responsive (MR) transcripts. The MR transcripts were mainly involved in cell wall structure, the TCA cycle, primary metabolism, transcription, protein modification and degradation, hormone metabolism, calcium regulation, receptor like kinase activity and transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

MR:

Microgravity responsive

SIMBOX:

Science In Microgravity Box

References

  • Barjaktarović, ž., Schütz, W., Madlung, J., Fladerer, C., Nordheim, A., Hampp, R.: Changes in the effective gravitational field strength affect the state of phosphorylation of stress-related proteins in callus cultures of Arabidopsis thaliana. J. Exp. Bot. 60(3), 779–789 (2009)

    Article  Google Scholar 

  • Baster, P., Robert, S., Kleine-Vehn, J., Vanneste, S., Kania, U., Grunewald, W., De Rybel, B., Beeckman, T., Friml, J.: SCF(TIR1/AFB)-auxin signalling regulates PIN vacuolar trafficking and auxin fluxes during root gravitropism. EMBO J. 32, 260–274 (2013)

    Article  Google Scholar 

  • Bjorkman, T., Leopold, A.C.: Effect of inhibitors of auxin transport and of calmodulin on a gravisensing-dependent current in maize roots. Plant Physiol. 84, 847–850 (1987)

    Article  Google Scholar 

  • Blancaflor, E.B., Fasano, J.M., Gilroy, S.: Mapping the functional roles of cap cells in the response of Arabidopsis primary roots to gravity. Plant Physiol. 116, 213–222 (1998)

    Article  Google Scholar 

  • Buer, C.S., Sukumar, P., Muday, G.K.: Ethylene induced flavonoid synthesis modulates root gravitropism. Plant Physiol. 140, 1382–1396 (2006)

    Google Scholar 

  • Centis-Aubay, S., Gasset, G., Mazars, C., Ranjeva, R., Graziana, A.: Changes in gravitational forces induce modifications of gene expression in A. Thaliana seedlings. Planta 218, 179–185 (2003)

    Article  Google Scholar 

  • Chandra, S., Chabot, S.F., Morrison, G.H., Leopold, A.C.: Localisation of calcium in amyloplasts of root cap cells using ion microsocopy. Science 140, 1384–1396 (1982)

    Google Scholar 

  • Chen, W.Q., Provart, N.J., Glazebrook, J., Katagiri, F., Chang, H.S., Eulgem, T., Mauch, F., Luan, S., Zou, G.Z., Whitham, S.A., Budworth, P.R., Tao, Y., Xie, Z.Y., Chen, X., Lam, S., Kreps, J.A., Harper, J.F., Si-Ammour, A., Mauch-Mani, B., Heinlein, M., Kobayashi, K., Hohn, T., Dangl, J.L., Wang, X., Zhu, T.: Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14, 559–574 (2002)

    Article  Google Scholar 

  • Cheng, Y., Shi, Z.P., Jiang, L.B., Ge, L.Q., Wu, J.C., Jahn, G.C.: Possible connection between imidacloprid-induced changes in rice gene transcription profiles and susceptibility to the brown plant hopper Nilaparvata lugens Stal (Hemiptera: Delphacidae). Pestic. Biochem. Physiol. 102, 213–219 (2012)

    Article  Google Scholar 

  • Cho, M., Lee, S.H., Cho, H.T.: P-glycoprotein4 displays auxin efflux transporter-like action in Arabidopsis root hair cells and tobacco cells. Plant Cell 19, 3930–3943 (2007)

    Article  Google Scholar 

  • Correll, M.J., Pyle, T.P., Millar, K.D., Sun, Y., Yao, J., Edelmann, R.E., Kiss, J.Z.: Transcriptome analyses of Arabidopsis thaliana seedlings grown in space: implications for gravity-responsive genes. Planta 238, 519–533 (2013)

    Article  Google Scholar 

  • Fengler, S., Spirer, I., Neef, M., Ecke, M., Nieselt, K., Hampp, R.: A whole-genome microarray study of arabidopsis thaliana semisolid callus cultures exposed to microgravity and nonmicrogravity related spaceflight conditions for 5 days on board of Shenzhou 8. Biomed. Res. Int., 547495 (2015)

  • Gaedeke, N., Klein, M., Kolukisaoglu, U., Forestier, C., Muller, A., Ansorge, M., Becker, D., Mamnun, Y., Kuchler, K., Schulz, B., Mueller-Roeber, B., Martinoia, E.: The Arabidopsis thaliana ABC transporter AtMRP5 controls root development and stomata movement. EMBO J. 20, 1875–1887 (2001)

    Article  Google Scholar 

  • Hasenstein, K.H., Evans, M.L.: Calcium dependence of rapid auxin action in maize roots. Plant Physiol. 81, 439–443 (1986)

    Article  Google Scholar 

  • Helliwell, C.A., Chandler, P.M., Poole, A., Dennis, E.S., Peacock, W.J.: The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyzes three steps of the gibberellin biosynthesis pathway. Proc. Natl. Acad. Sci. U.S.A 98, 2065–2070 (2001)

    Article  Google Scholar 

  • Hirose, N., Makita, N., Kojima, M., Kamada-Nobusada, T., Sakakibara, H.: Overexpression of a type-A response regulator alters rice morphology and cytokinin metabolism. Plant Cell Physiol. 48, 523–539 (2007)

    Article  Google Scholar 

  • Hoson, T., Soga, K., Mori, R., Saiki, M., Nakamura, Y., Wakabayashi, K., Kamisaka, S.: Stimulation of elongation growth and cell wall loosening in rice coleoptiles under microgravity conditions in space. Plant Cell Physiol. 43, 1067–1071 (2002)

    Article  Google Scholar 

  • Hoson, T., Soga, K., Mori, R., Saiki, M., Nakamura, Y., Wakabayashi, K., Kamisaka, S.: Cell wall changes involved in the automorphic curvature of rice coleoptiles under microgravity conditions in space. J. Plant Res. 117, 449–455 (2004)

    Article  Google Scholar 

  • Kimbrough, J.M., Salinas-Mondragon, R., Boss, W.F., Brown, C.S., Sederoff, H.W.: The fast and transient transcriptional network of gravity and mechanical stimulation in the Arabidopsis root apex. Plant Physiol. 136, 2790–2805 (2004)

    Article  Google Scholar 

  • Kiss, J.Z., Hertel, R., Sack, F.D.: Amyloplasts are necessary for full gravitropic sensitivity in roots of arabidopsis-thaliana. Planta 177, 198–206 (1989)

    Article  Google Scholar 

  • Koizumi, K., Yokoyama, R., Kamada, M., Omori, K., Ishioka, N., Takeoka, H., Shimazu, T., Nishitani, K.: Reverse genetic approach to exploring genes responsible for cell-wall dynamics in supporting tissues of Arabidopsis thaliana under microgravity conditions. Biol. Sci. Space 21, 48–55 (2007)

    Article  Google Scholar 

  • Konings, A.: Gravitropism of roots: an evaluation of progress during the last three decades. Bot. Acta 44, 195–223 (1995)

    Google Scholar 

  • Martzivanou, M., Babbick, M., Cogoli-Greuter, M., Hampp, R.: Microgravity-related changes in gene expression after short-term exposure of Arabidopsis thaliana cell cultures. Protoplasma 229, 155–162 (2006)

    Article  Google Scholar 

  • Martzivanou, M., Hampp, R.: Hyper-gravity effects on the Arabidopsis transcriptome. Physiol. Plant 118, 221–231 (2003)

    Article  Google Scholar 

  • Muday, G.K., Brady, S.R., Argueso, C.T., Deruere, J., Kieber, J.J., DeLong, A.: RCN1-regulated phosphatase activity and EIN2 modulate hypocotyl gravitropism by a mechanism that does not require ethylene signaling. Plant Physiol. 141, 1617–1629 (2006)

    Article  Google Scholar 

  • Multani, D.S., Briggs, S.P., Chamberlin, M.A., Blakeslee, J.J., Murphy, A.S., Johal, G.S.: Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science 302, 81–84 (2003)

    Article  Google Scholar 

  • Page, R.D.: TreeView: an application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12, 357–358 (1996)

    Google Scholar 

  • Philosoph-Hadas, S., Friedman, H., Meir, S.: Gravitropic bending and plant hormones. Vitam. Horm. 72, 31–78 (2005)

    Article  Google Scholar 

  • Qin, D., Wu, H., Peng, H., Yao, Y., Ni, Z., Li, Z., Zhou, C., Sun, Q.: Heat stress-responsive transcriptome analysis in heat susceptible and tolerant wheat (Triticum aestivum L.) by using Wheat Genome Array. BMC Genomics 9, 432 (2008)

    Article  Google Scholar 

  • Rashotte, A.M., Brady, S.R., Reed, R.C., Ante, S.J., Muday, G.K.: Basipetal auxin transport is required for gravitropism in roots of Arabidopsis. Plant Physiol. 122, 481–490 (2000)

    Article  Google Scholar 

  • Riechmann, J.L., Heard, J., Martin, G., Reuber, L., Jiang, C.-Z., Keddie, J., Adam, L., Pineda, O., Ratcliffe, O.J., Samaha, R.R., Creelman, R., Pilgrim, M., Broun, P., Zhang, J.Z., Ghandehari, D., Sherman, B.K., Yu, G.-L.: Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290, 2105–2110 (2009)

    Article  Google Scholar 

  • Sack, F.D.: Plastids and gravitropic sensing. Planta 203, S63–68 (1997)

    Article  Google Scholar 

  • Sakamoto, T., Miura, K., Itoh, H., Tatsumi, T., Ueguchi-Tanaka, M., Ishiyama, K., Kobayashi, M., Agrawal, G.K., Takeda, S., Abe, K., Miyao, A., Hirochika, H., Kitano, H., Ashikari, M., Matsuoka, M. Plant Physiol. 134, 1642–1653 (2004)

  • Salmi, M.L., Roux, S.J.: Gene expression changes induced by space flight in single-cells of the fern Ceratopteris richardii. Planta 229, 151–159 (2008)

    Article  Google Scholar 

  • Stinemetz, C.L., Kuzmanoff, K.M., Evans, M.L., Jarrett, H.W.: Correlation between calmodulin activity and gravitropic sensitivity in primary roots of maize. Plant Physiol. 84, 1337–1342 (1987)

    Article  Google Scholar 

  • Stracke, R., Werber, M., Weisshaar, B.: The R2R3-MYB gene family in Arabidopsis thaliana. Curr. Opin. Plant Biol. 4, 447–456 (2001)

    Article  Google Scholar 

  • Strohm, A.K., Baldwin, K.L., Masson, P.H.: Molecular mechanisms of root gravity sensing and signal transduction. Wiley Interdiscip. Rev. Dev. Biol. 1, 276–285 (2012)

    Article  Google Scholar 

  • Tan, X., Calderon-Villalobos, L.I., Sharon, M., Zheng, C., Robinson, C.V., Estelle, M., Zheng, N.: Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446, 640–645 (2007)

    Article  Google Scholar 

  • Thimm, O., Blasing, O., Gibon, Y., Nagel, A., Meyer, S., Kruger, P., Selbig, J., Muller, L.A., Rhee, S.Y., Stitt, M.: MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 37, 914–939 (2004)

    Article  Google Scholar 

  • Usadel, B., Nagel, A., Thimm, O., Redestig, H., Blaesing, O.E., Palacios-Rojas, N., Selbig, J., Hannemann, J., Piques, M.C., Steinhauser, D., Scheible, W.R., Gibon, Y., Morcuende, R., Weicht, D., Meyer, S., Stitt, M.: Extension of the visualization tool MapMan to allow statistical analysis of arrays, display of corresponding genes, and comparison with known responses. Plant Physiol. 138, 1195–1204 (2005)

    Article  Google Scholar 

  • Vicente-Agullo, F., Rigas, S., Desbrosses, G., Dolan, L., Hatzopoulos, P., Grabov, A.: Potassium carrier TRH1 is required for auxin transport in Arabidopsis roots. Plant J. 40, 523–535 (2004)

    Article  Google Scholar 

  • Xu, J.: Stress responses to phenol in Arabidopsis and transcriptional changes revealed by microarry analysis. Planta 235, 399–410 (2012)

    Article  Google Scholar 

  • Zhang, Y., Wang, L., Xie, J., Zheng, H.: Differential protein expression profiling of Arabidopsis thaliana callus under microgravity on board the Chinese SZ-8 spacecraft. Planta (2014)

Download references

Acknowledgments

Project coordination of Technology and Engineering Center for Space Utilization (Chinese Academy of Sciences)), Astrium Space Transportation (ASTRIUM) for providing SIMBOX, Shanghai Biochip Co., Ltd. for help with the microarray analysis, Xue Li (Institute of Plant Physiology and Ecology, SIBS, CAS) for help with the data analysis.This work was supported by the National Basic Research Program of China (grant 2011CB710902), the China Manned Space Flight Technology Project and the National Transgenic Program(grant2009ZX08004-008B), the Strategic Priority Research Program on Space Science of the Chinese Academy of Sciences (Grant No. XDA04020202-15, XDA04020415), the National Scientific Program (grant 2012AA101103-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiming Cai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, J., Chen, H. & Cai, W. Transcriptome Analysis of Oryza sativa Calli Under Microgravity. Microgravity Sci. Technol. 27, 437–453 (2015). https://doi.org/10.1007/s12217-015-9432-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-015-9432-2

Keywords

Navigation