Microgravity Science and Technology

, Volume 27, Issue 6, pp 377–386 | Cite as

Higher Plants in Space: Microgravity Perception, Response, and Adaptation

Original Article

Abstract

Microgravity is a major abiotic stress in space. Its effects on plants may depend on the duration of exposure. We focused on two different phases of microgravity responses in space. When higher plants are exposed to short-term (seconds to hours) microgravity, such as on board parabolic flights and sounding rockets, their cells usually exhibit abiotic stress responses. For example, Ca 2+-, lipid-, and pH-signaling are rapidly enhanced, then the production of reactive oxygen species and other radicals increase dramatically along with changes in metabolism and auxin signaling. Under long-term (days to months) microgravity exposure, plants acclimatize to the stress by changing their metabolism and oxidative response and by enhancing other tropic responses. We conclude by suggesting that a systematic analysis of regulatory networks at the molecular level of higher plants is needed to understand the molecular signals in the distinct phases of the microgravity response and adaptation.

Keywords

Microgravity Higher plant Response Adaptation 

References

  1. Andreeva, Z., Barton, D., Armour, W.J., Li, M.Y., Liao, L.F., McKellar, H.L., Marc, J.: Inhibition of phospholipase C disrupts cytoskeletal organization and gravitropic growth in Arabidopsis roots. Planta 232, 1263–1279 (2010)CrossRefGoogle Scholar
  2. Aubry-Hivet, D., Nziengui, H., Rapp, K., Oliveira, O., Paponov, I.A., Li, Y., Hauslage, J., Vagt, N., Braun, M., Ditengou, F.A., Dovzhenko, A., Palme, K.: Analysis of gene expression during parabolic flights reveals distinct early gravity responses in Arabidopsis roots. Plant Biol. 16, 129–141 (2014)CrossRefGoogle Scholar
  3. Babbick, M., Dijkstra, C., Larkin, O.J., Anthony, P., Davey, M.R., Power, J.B., Lowe, K.C., Cogoli-Greuter, M., Hampp, R.: Expression of transcription factors after short-term exposure ofArabidopsis thaliana cell culture to hypergravity and simulated microgravity (2-D/3-D clinorotation, magnetic levitation). Adv. Space Res. 39, 1182–1189 (2007)CrossRefGoogle Scholar
  4. Barjaktarović, ž., Schütz, W., Madlung, J., Fladerer, C., Nordheim, N., Hampp, R.: Changes in theeffective gravitational field strength affect the state of phosphorylation of stress related proteins in callus cultures of Arabidopsis thaliana. J. Exp. Bot. 60, 779–789 (2009)CrossRefGoogle Scholar
  5. Barjaktarović, ž., Nordheim, A., Lamkemeyer, T., Fladerer, C., Hampp, R., Madlung, J.: Time-course of changes in protein amounts of specific proteins upon exposure to hyper-g, 2-D clinorotation and random positioning of Arabidopsis cell cultures. J. Exp. Bot. 58, 4357–4363 (2007)CrossRefGoogle Scholar
  6. Boonsirichai, K., Sedbrook, J.C., Chen, R., Gilroy, S., Masson, P.H.: ALTERED RESPONSE TO GRAVITY is a peripheral membrane protein that modulates gravity-induced cytoplasmic alkalinization and laterial auxin transport in plant statocytes. Plant Cell 15, 2612–2625 (2006)CrossRefGoogle Scholar
  7. Boutté, Y., Grebe, M.: Cellular processes relying on sterol function in plants. Curr. Opin. Plant Biol. 12, 705–13 (2009)CrossRefGoogle Scholar
  8. Briarty, L.G., Maher, E.P.: Reserve utilization in seeds of Arabidopsis thaliana germinating in microgravity. Int. J. Plant Sci. 165, 545–551 (2004)CrossRefGoogle Scholar
  9. Briegleb, W.: Some qualitative and quantitative aspects of the fast-rotating clinostat as a research tool. ASGSB Bull. 5, 23–30 (1992)Google Scholar
  10. Claassen, D.E., Spooner, B.S.: Impact of altered gravity on aspects of cell biology. Int. Rev. Cytol. 156, 301–373 (1994)CrossRefGoogle Scholar
  11. Chebli, Y., Geitmann, A.: Gravity research on plants: use of single-cell experiment models. Front Plant Sci. 2, 56 (2011)CrossRefGoogle Scholar
  12. Correll, M.J., Kiss, J.Z.: Space-based research on plant tropisms. In: Gilroy, S., Masson, P.H. (eds.) Plant tropisms, pp 161–182. Blackwell, Ames, USA (2008)Google Scholar
  13. Correll, M.J., Pyle, T.P., Millar, K.D., Sun, Y., Yao, J., Edelmann, R.E., Kiss, J.Z.: Transcriptome analyses of Arabidopsis thaliana seedlings grown in space: implications for gravity-responsive genes. Planta 238, 519–533 (2013)CrossRefGoogle Scholar
  14. Cowles, J.R., Lemay, R., Jahns, G.: Microgravity effects on plant growth and lignification. Astro. Phys. Lett. Commun. 27, 223–228 (1988)Google Scholar
  15. Cowles, J.R., Scheld, H.W., Lemay, R., Peterson, C.: Growth and lignification in seedlings exposed to eight days of microgravity. Ann. Bot. 54, 33–48 (1984)Google Scholar
  16. De Micco, V., Arena, C., Pignalosa, D., Durante, M.: Review. Effects of sparsely and densely ionizing radiation on plants. Rad. Env. Biophy. 50, 1–19 (2011)CrossRefGoogle Scholar
  17. De Micco, V., De Pascale, S., Paradiso, R., Arone, G.: Microgravity effects on different stages of higher plant life cycle and completion of the seed-to -seed cycle. Plant Biol. 16, 31–38 (2014)CrossRefGoogle Scholar
  18. Driss-Ecole, D.L.V., Carnero-Diaz, E., Perbal, G.: Gravisensitivity and automorphogenesis of lentil seedling roots grown on board the international space station. Physiol. Plant 134, 191–201 (2008)CrossRefGoogle Scholar
  19. Fasano, J.M., Swanson, S.J., Blancaflor, E.B., Dowd, P.E., Kao, T.H., Gilroy, S.: Changes in root cap pH are required for the gravity response of the Arabidopsisroot. Plant Cell 13, 907–921 (2001)CrossRefGoogle Scholar
  20. Fengler, S., Spirer, I., Neef, M., Ecke, M., Nieselt, K., Hampp, R.: A whole-genome microarray study of Arabidopsis thaliana semisolid callus cultures exposed to microgravity and nonmicrogravity related spaceflight conditions for 5 days on board of Shenzhou 8. BioMed Res. Int. Article ID 547495 (2015)Google Scholar
  21. Geilfus, C.M., Mühling, K.H., Kaiser, H., Plieth, C.: Bacterially produced Pt-GFP as ratiometric dual-excitation sensor for in planta mapping of leaf apoplastic pH in intact Avena sativa and Vicia faba. Plant Methods 10, 31 (2014)CrossRefGoogle Scholar
  22. Gillaspy, G.E.: The cellular language of myo-inositol signaling. New Phytol. 192, 823–839 (2011)CrossRefGoogle Scholar
  23. Gjetting, K.S., Ytting, C.K., Schulz, A., Fuglsang, A.T.: Live imaging of intra- and extracellular pH in plants using pH usion, a novel genetically encoded biosensor. J. Exp. Bot. 63, 3207–3218 (2012)CrossRefGoogle Scholar
  24. Hampp, R., Hoffmann, E., Schönherr, K., Johann, P., De Filippis, L.: Fusion and metabolism of plant cells as affected by microgravity. Planta 203, S42–53 (1997)CrossRefGoogle Scholar
  25. Hausmann, N., Fengler, S., Hennig, A., Franz-Wachtel, M., Hampp, R., Neef, M.: Cytosolic calcium, hydrogen peroxide and related gene expression and protein modulation in Arabidopsis thaliana cell cultures respond immediately to altered gravitation: parabolic flight data. Plant Biol. 16, 120–128 (2014)CrossRefGoogle Scholar
  26. Hejnowicz, Z., Sondag, C., Alt, W., Sievers, A.: Temporal course of graviperception in intermittently stimulated cress roots. Plant Cell Environ. 21, 1293–300 (1998)CrossRefGoogle Scholar
  27. Herranz, R., Manzano, A.I., van Loon, J.J., Christianen, P.C., Medina, F.J.: Proteomic signature of Arabidopsis cell cultures exposed to magnetically induced hyper- and microgravity environments. Astrobiology 13, 217–224 (2013)CrossRefGoogle Scholar
  28. Hoshino, T., Miyamoto, K., Ueda, J.: Automorphosis and auxin polar transport of etiolated pea seedlings under microgravity conditions. Biol. Sci. Space 18, 94–95 (2004)Google Scholar
  29. Hoson, T., Soga, K., Wakabayashi, K., Hashimoto, T., Karahara, I., Yano, S., Tanigaki, F., Shimazu, T., Kasahara, I., Masuda, D., Kamisaka, S.: Growth stimulation in inflorescences of an Arabidopsis tubulin mutant under microgravity conditions in space. Plant Bio. Supp. 1, 91–96 (2014)CrossRefGoogle Scholar
  30. Hoson, T., Saiki, M., Kamisaka, S., yamashita, M.: Automorphogenesis and gravitropism of plant seedlings grown under microgravity conditions. Adv. Space Res. 27, 933–940 (2001)CrossRefGoogle Scholar
  31. Hoson, T.K.S., Yamamoto, R., Yamashita, M., Masuda, Y.: Automorphosis of maize shoots under simulated microgravity on a three-dimensional clinostat. Physiol. Plant 93, 346–351 (1995)CrossRefGoogle Scholar
  32. Im, Y.J., Phillippy, B.Q., Perera, I.Y.: InsP3 in plant cells. In: Munnik, T (ed.) Lipid signaling in plants, pp 145–160. Springer, Berlin, Germany (2010)Google Scholar
  33. Inglis, P.W., Ciampi, A.Y., Salomão, A.N., Costa Tda, S., Azevedo, V.C.: Expression of stress-related genes in zebrawood (Astronium fraxinifolium, Anacardiaceae) seedlings following germination in microgravity. Gene. Mol. Biol. 37, 81–92 (2014)CrossRefGoogle Scholar
  34. Johnsson, A., Solheim, B.G., Iversen, T.H.: Gravity amplifies and microgravity decreases circumnutations in Arabidopsis thaliana stems: results from a space experiment. New Phytol. 182, 621–629 (2009)CrossRefGoogle Scholar
  35. Joo, J.H., Bae, Y.S., Lee, J.S.: Role of auxin-induced reactive oxygen species in root gravitropism. Plant Physiol. 126, 1055–1060 (2001)CrossRefGoogle Scholar
  36. Kittang, A.I., van Loon, J.J., Vorst, O., Hall, R.D., Fossum, K., Iversen, T.H.: Ground based studies of gene expression in Arabidopsis exposed to gravity stresses. J Gravit. Physiol. 11, 223–224 (2004)Google Scholar
  37. Kliss, M., Macelroy, R., Borchers, B., Farrance, M., Nelson, T., Blackwell, C., Yendler, B., et al.: Controlled ecological life support systems (CELSS) flight experimentation. Adv. Space. Res. 14, 61–69 (1994)CrossRefGoogle Scholar
  38. Kozeko, L., Kordyum, E.: Effect of hypergravtiy on the level of heat shock protein 70 and 90 in pea seedlings. Microgravitity Sci. Technol. 21, 175–178 (2009)CrossRefGoogle Scholar
  39. Kriegs, B., Theisen, R., Schnabl, H.: Inositol 1,4,5-trisphosphate and Ran expression during simulated and real microgravity. Protoplasma 229, 163–174 (2006)CrossRefGoogle Scholar
  40. Krinke, O., Novotná, Z., Valentová, O., Martinec, J.: Inositol trisphosphate receptor in higher plants: is it real. J. Exp. Bot. 58, 361–376 (2007)CrossRefGoogle Scholar
  41. Leitz, G., Kang, B.H., Schoenwaelder, M.E., Staehelin, L.A.: Statolith sedimentation kinetics and force transduction to the cortical endoplasmic reticulum in gravity-sensing Arabidopsis columella cells. Plant Cell 21, 843–60 (2009)CrossRefGoogle Scholar
  42. Link, B.M., Wagner, E.R., Cosgrove, D.J.: The effect of a microgravity (space) environment on the expression of expansins from the peg and root tissues of Cucumis sativus. Physiol. Plant 113, 292–300 (2001)CrossRefGoogle Scholar
  43. Manzano, A.I., van Loon, J.J., Christanen, P.C., Gonzalez-Rubio, J.M., Medina, F.J., Herranz, R.: Gravitational and magnetic field variations synergize to cause subtle variations in the global transcriptional state of Arabidopsis in vitro callus cultures. BMC Genomics 13, 105 (2012)CrossRefGoogle Scholar
  44. Martzivanou, M., Babbick, M., Cogoli-Greuter, M., Hampp, R.: Microgravity-related changes in gene expression after short-term exposure of Arabidopsi thaliana cell cultures. Protoplasma 229, 155–162 (2006)CrossRefGoogle Scholar
  45. Matía, I., Van Loon, J.J.W.A., Carnero-Díaz, E., Marco, R., Medina, F.J.: Seed germination and seedling growth under simulated microgravity causes alterations in plant cell proliferation and ribosome biogenesis. Microgravity Sci. Technol. 21, 169–174 (2009)CrossRefGoogle Scholar
  46. Mazars, C., Brière, C., Grat, S., Pichereaux, C., Rossignol, M., Pereda-Loth, V., Eche, B., Boucheron-Dubuisson, E., Disquet, I.L., Medina, F.J., Graziana, A., Carnero-Diaz, E.: Microgravity induces changes in microsome-associated proteins of Arabidopsis seedlings grown on board the international space station. Plos one e91814, 9 (2014)Google Scholar
  47. Millar, K.D.L., Kumar, P., Correll, M.J., Mullen, J.L., Hangarter, R.P., Edelmann, R.E., Kiss, J.Z.: A novel phototropic response to red light is revealed in microgravity. New Phytol. 186, 648–656 (2010)CrossRefGoogle Scholar
  48. Monshausen, G.B., Miller, N.D., Murphy, A.S., Gilroy, S.: Dynamics of auxin-dependent Ca2 + and pH signaling in root growth revealed by integrating high-resolution imaging with automated computer vision-based analysis. Plant J. 65, 309–318 (2011)CrossRefGoogle Scholar
  49. Moriwaki, T., Miyazawa, Y., Kobayashi, A., Takahashi, H.: Molecular mechanisms of hydrotropism in seedling roots of Arabidopsis thaliana (Brassicaceae). Amer. J. Bot. 100, 25–34 (2013)CrossRefGoogle Scholar
  50. Nasir, A., Strauch, S.M., Becker, I., Sperling, A., Schuster, M., Richter, P.R., WeiSSkopf, M., Ntefidou, M., Daiker, V., An, Y.A., Li, X.Y., Liu, Y.D., Lebert, M.: The influence of microgravity on Euglena gracilis as studied on Shenzhou 8. Plant Biol. Suppl. 1, 113–119 (2014)Google Scholar
  51. Nedukha, E.: Effects of microgravity on the structure and function of plant cell walls. Int. Rev. Cytol. 170, 39–77 (1997)CrossRefGoogle Scholar
  52. Paul, A-L., Daugherty, C.J., Bihn, E.A., Chapman, D.K., Norwood, K.L.L., Ferl, R.J.: Transgene expression patterns indicate that spaceflight affects stress signal perception and transduction in Arabidopsis. Plant Physiol. 126, 613–621 (2001)CrossRefGoogle Scholar
  53. Paul, A-L., Popp, M.P., Gurley, W.B., Guy, C., Norwood, K.L., Ferl, R.J.: Arabidopsis gene expression patterns are altered during spaceflight. Adv. Space Res. 36, 1175–1181 (2005)CrossRefGoogle Scholar
  54. Paul, A-L., Wheeler, R.M., Levine, H.G., Jerl, R.J.: Fundamental plant biology enabled by the space shuttle. Amer. J. Bot. 100, 226–234 (2013a)CrossRefGoogle Scholar
  55. Paul, A-L., Zupanska, A.K., Schultz, E., Rerl, R.J.: Organ-specific remodeling of the Arabidopsis transcriptome in response to space flight. BMC Plant Biol. 13, 112 (2013b)CrossRefGoogle Scholar
  56. Paul, A.L., Amalfitano, C.E., Ferl, R.J.: Plant growth strategies are remodeled by spaceflight. BMC Plant Biol. 12, 232 (2012)CrossRefGoogle Scholar
  57. Paul, A-L., Manak, M.S., Mayfield, J.D., Reyes, M.F., Gurley, W.B., Ferl, R.J.: Parabolic flight induces changes in gene expression patterns in Arabidopsis thaliana. Astrobiology 11, 743–758 (2011)CrossRefGoogle Scholar
  58. Perbal, G., Driss-Ecole, D.: Mechanotransduction in gravisensing cells. Trends Plant Sci. 8, 498–504 (2003)CrossRefGoogle Scholar
  59. Perbal, G., Jeune, B., Lefranc, A., Carnero-Diaz, E., Driss-Ecole, D.: The dose-response curve of the gravitropic reaction: a re-analysis. Physiol. Plant 114, 336–42 (2002)CrossRefGoogle Scholar
  60. Perera, I.Y., Heilmann, I., Boss, W.F.: Transient and sustained increases in inositol 1,4,5-trisphosphate precede the differential growth response in gravistimulated maize pulvini. PNAS 96, 5838–5843 (1999)CrossRefGoogle Scholar
  61. Perera, I.Y., Heilmann, I., Chang, S.C., Boss, W.F.: A role for inositol 1,4,5-trisphosphate in gravitropic signaling and the retention of cold-perceived gravistimulation of oat shoot pulvini. Plant Physiol. 125, 1499–1507 (2001)CrossRefGoogle Scholar
  62. Plieth, C.: Calcium: just another regulator in the machinery of life. Ann. Bot. 96, 1–8 (2005)CrossRefGoogle Scholar
  63. Poovaiah, B.W., Yang, T., van Loon, J.J.: Calcium/calmodulin-mediated gravitropic response in plants. J. Gravit. Physiol. 9, 211–214 (2002)Google Scholar
  64. Ruyters, G., Braun, M.: Plant biology in space: recent accomplishments and recommendations for future research. Plant Biol. Suppl. 1, 4–11 (2014)CrossRefGoogle Scholar
  65. Salisbury, F.B., Bugbee, B.: Plant productivity in controlled environments. HortScience 23, 293–299 (1988)Google Scholar
  66. Salinas-Mondragon, R.E., Kajla, J.D., Perera, I.Y., Brown, C.S., Sederoff, H.W.: Role of inositol 1,4,5-triphosphate signalling in gravitropic and phototropic gene expression. Plant Cell Environ. 33, 2041–2055 (2010)CrossRefGoogle Scholar
  67. Sato, E.M., Hijazi, H., Bennett, M.J., Vissenberg, K., Swarup, R.: New insights into root gravitropic signalling. J. Exp. Bot. 515, 511–515 (2014)Google Scholar
  68. Sato, F., Takeda, S., Matsushima, H., Yamada, Y.: Cell growth and organ differentiation in cultured tobacco cells under spaceflight condition. Biol. Sci. Space 13, 18–24 (1999)CrossRefGoogle Scholar
  69. Smith, C.M., Desai, M., Land, E.S., Perera, I.Y.: A role for lipid-mediated signaling in plant gravitropism. Am. J. Bot. 100, 153–160 (2013)CrossRefGoogle Scholar
  70. Soga, K., Wakabayashi, K., Kamisaka, S., hoson, T.: Stimulation of elongation growth and xyloglucan breakdown in Arabidopsis hypocotyls under microgravity conditions in space. Planta 215, 1040–1046 (2002)CrossRefGoogle Scholar
  71. Soh, H., Auh, C., Soh, W.Y., Han, K., Kim, D., Lee, S., Rhee, Y.: Gene expression changes in Arabidopsis seedlings during short- to long-term exposure to 3-D clinorotation. Planta 234, 255–270 (2011)CrossRefGoogle Scholar
  72. Solheim, B.G., Johnsson, A., Iversen, T.H.: Ultradian rhythms in Arabidopsis thaliana leaves in microgravity. New Phytol. 183, 1043–1052 (2009)CrossRefGoogle Scholar
  73. Stanković, B., Volkmann, D., Sack, F.D.: Autotropism, automorphogenesis, and gravity. Physiol. Plant 102, 328–335 (1998)CrossRefGoogle Scholar
  74. Stutte, G.W., Monje, O., Hatfield, R.D., Paul, A-L., Ferl, R.J., Simone, C.G.: Microgravity effects on leaf morphology, cell structure, carbon metabolism and mRNA expression of dwarf wheat. Planta 224, 1038–1049 (2006)CrossRefGoogle Scholar
  75. Takeda, S., Gapper, C., Kaya, H., Bell, E., Kuchitsu, K., Dolan, L.: Local positive feedback regulation determines cell shape in root hair cells. Science 319, 1241–1244 (2008)CrossRefGoogle Scholar
  76. Tako, Y., Arai, R., Tsuga, S., Komatsubara, O., Masuda, T., Nozoe, S., Nitta, K.: CEEF, closed ecology experiment facilities. Gravit. Space Biol. 23, 13–24 (2010)Google Scholar
  77. Tan, C., Wang, H., Zhang, Y., Qi, B., Xu, G., Zheng, H.Q.: A proteomic approach to analyzing responses of Arabidopsis thaliana root cells to different gravitational conditions using an agravitropic mutant, pin2 and its wild type. Proteome Sci. 9, 72 (2011)CrossRefGoogle Scholar
  78. Toker, A.: Phosphoinositides and signal transduction. Cell Mol. Life Sci. 59, 761–779 (2002)CrossRefGoogle Scholar
  79. Toyota, M., Furuichi, T., Tatsumi, H., Sokabe, M.: Cytoplasmic calcium increases in response to changes in the gravity vector in hypocotyls and petioles of Arabidopsis seedlings. Plant Physiol. 146, 505–14 (2008)CrossRefGoogle Scholar
  80. Tripathy, B.C., Brown, C.S., Levine, H.G., Krikorian, A.D.: Growth and photosynthetic responses of wheat plants grown in space. Plant Physiol. 110, 801–806 (1996)CrossRefGoogle Scholar
  81. Vandenbrink, J.P., Kiss, J.Z., Herranz, R., Medina, F.J.: Light and gravity signals synergize in modulating plant development. Front. Plant Sci. 5, 563 (2014)CrossRefGoogle Scholar
  82. Volovik, O.I., Kordyum, E.L., Guikema, J.A.: Some characteristics of photosynthetic apparatus under conditions of spaceflight. J. Gravit. Physiol. 6, P127–128 (1999)Google Scholar
  83. Wang, H., Zheng, H.Q., Sha, W., Zeng, R., Xia, Q.C.: A proteomic approach to analyzing responses of Arabidopsis thaliana callus cells to clinostat rotation. J. Exp. Bot. 57, 827–835 (2006)CrossRefGoogle Scholar
  84. Wheeler, R.M.: Plants for human life support in space: from Myers to Mars. Gravit. Space Biol. 23, 25–35 (2010)Google Scholar
  85. Wolff, S.A., Coelho, L.H., Karoliussen, I., Jost, A-I. K.: Effects of the extraterrestrial environment on plants: recommendations for future space experiments for the MELiSSA higher plant compartment. Life 4, 189–204 (2014)CrossRefGoogle Scholar
  86. Wong, H.L., Pinontoan, R., Hayashi, K., Tabata, R., Yaeno, T., Hasegawa, K., Kojima, C., Yoshioka, H., Iba, K., Kawasaki, T., Shimamoto, K.: Regulation of rice NADPH oxidase by binding of rac GTPase to its N-terminal extension. Plant Cell 19, 4022–4034 (2007)CrossRefGoogle Scholar
  87. Xu, D., Guo, S., Liu, M.: Identification of miRNAs involved in long-term simulated microgravity response in Solanum lycopersicum. Plant Physiol. Biochem. 66, 10–19 (2013)CrossRefGoogle Scholar
  88. Zenko, C., Komatu, K., Yokoyama, R., Nishitani, K., Kamisaka, S.: Effect of hypergravity stimulus on XTH gene expression in Arabidopsis thaliana. Biol. Sci. Space 17, 259–260 (2003)Google Scholar
  89. Zhang, Y., Wang, L., Xie, J., Zheng, H.Q.: Differential protein expression profiling of Arabidopsis thaliana callus under microgravity on board the Chinese SZ-8 spacecraft. Planta 241, 475–488 (2015)CrossRefGoogle Scholar
  90. Zheng, H.Q., Wang, H., Wei, N., Chen, A.D., Wang, L.F., Zheng, W.B., Zhang, T.: Live imaging technique for studies of growth and development of Chinese cabbage under microgravity in a recoverable satellite (SJ-8). Microgravity Sci. Tech. 20, 137–143 (2008)CrossRefGoogle Scholar
  91. Zupanska, A.K., Denison, F.C., Ferl, R.J., Paul, A-L.: Spaceflight engages heat shock protein and other molecular chaperone genes in tissue culture cells of Arabidopsis thaliana. Am. J. Bot. 100, 235–248 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
  2. 2.Institute of BotanyChinese Academy of SciencesBeijingChina

Personalised recommendations