Skip to main content
Log in

Liquid-Gas-Like Phase Transition in Sand Flow Under Microgravity

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

In previous studies of granular flow, it has been found that gravity plays a compacting role, causing convection and stratification by density. However, there is a lack of research and analysis of the characteristics of different particles’ motion under normal gravity contrary to microgravity. In this paper, we conduct model experiments on sand flow using a model test system based on a drop tower under microgravity, within which the characteristics and development processes of granular flow under microgravity are captured by high-speed cameras. The configurations of granular flow are simulated using a modified MPS (moving particle simulation), which is a mesh-free, pure Lagrangian method. Moreover, liquid-gas-like phase transitions in the sand flow under microgravity, including the transitions to “escaped”, “jumping”, and “scattered” particles are highlighted, and their effects on the weakening of shear resistance, enhancement of fluidization, and changes in particle-wall and particle-particle contact mode are analyzed. This study could help explain the surface geology evolution of small solar bodies and elucidate the nature of granular interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Blum, J.: Astrophysical microgravity experiments with dust particles. Microgravity Sci. Technol. 22(4), 517–527 (2010)

    Article  Google Scholar 

  • Bossis, G., Grasselli, Y., Volkova, O.: Granular rheology in zero gravity. J. Phys.: Condens. Matter. 16(18), 3279–3287 (2004)

    Google Scholar 

  • Brucks, A., Richter, L., Vincent, J.-B., Blum, J.: Effect of reduce-gravity conditions on the flowability of granular media. Earth & Space 2008: Engineering, Science, Construction and Operations in Challenging Environments, pp 1–8 (2008)

  • Chakraborty, T., Salgado, R.: Dilatancy and shear strength of sand at low confining pressures. J. Geotech. Geoenviron. Eng. 136(3), 527–532 (2010)

    Article  Google Scholar 

  • Esipov, S.E., Pöschel, T.: The granular phase diagram. J. Stat. Phys. 86(5-6), 1385–1395 (1997)

    Article  MATH  Google Scholar 

  • Falcon, É., Wunenburger, R., Évesque, P., Fauve, S., Chabot, C., Garrabos, Y., Beysens, D.: Cluster formation in a granular medium fluidized by vibrations in low gravity. Phys. Rev. Lett. 83(2), 440–443 (1999)

    Article  Google Scholar 

  • Forterre, Y., Pouliquen, O.: Flows of dense granular media. Annu. Rev. Fluid Mech. 40, 1–24 (2008)

    Article  MathSciNet  Google Scholar 

  • Goldhirsch, I.: Rapid granular flows. Ann. Rev. Fluid Mech. 35(1), 267–293 (2003)

    Article  MathSciNet  Google Scholar 

  • Hofmeister, P.G., Blum, J., Heißelmann, D.: The flow of granular matter under reduced-gravity conditions. Powders & Grains 2009: Proceedings of the 6th International Conference on Micromechanics of GranularMedia. AIP Conf. Proc. 1145, 71–74 (2009)

    Article  Google Scholar 

  • Huang, Y., Mao, W.: First results derived from a drop-tower testing system for granular flow in a microgravity environment. Landslides 10(4), 493–501 (2013)

    Article  Google Scholar 

  • Huang, Y., Mao, W., Zheng, H., Li, G.: Computational fluid dynamics modeling of post-liquefaction soil flow using the volume of fluid method. Bull. Eng. Geol. Environ. 71(2), 359–366 (2012a)

    Article  Google Scholar 

  • Huang, Y., Wang, D., Mao, W.: A test system of soil flow based on a drop tower. CN Patent ZL 201210557859.3. in Chinese (2014)

  • Huang, Y., Zhang, W., Mao, W., Jin, C.: Flow analysis of liquefied soils based on smoothed particle hydrodynamics. Nat. Hazards 59(3), 1547–1560 (2011)

    Article  Google Scholar 

  • Huang, Y., Zhang, W., Xu, Q., Xie, P., Hao, L.: Run-out analysis of flow-like landslides triggered by the Ms 8.0 2008 Wenchuan earthquake using smoothed particle hydrodynamics. Landslides 9(2), 275–283 (2012b)

    Article  Google Scholar 

  • Huang, Y., Zhu, C., Xiang, X.: Granular flow under microgravity: a preliminary review. Microgravity Sci. Technol. 26(2), 131–138 (2014)

    Article  Google Scholar 

  • Huang, Y., Zhu, C.: Simulation of flow slides in municipal solid waste dumps using a modified MPS method. Nat. Hazards 74(2), 491–508 (2014)

    Article  Google Scholar 

  • Huang, Y., Zhu, C.: Numerical analysis of tsunami-structure interaction using a modified MPS method. Nat. Hazards 75(3), 2847–2862 (2015)

    Article  Google Scholar 

  • Koshizuka, S., Oka, Y.: Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nucl. Sci. Eng. 123(3), 421–434 (1996)

    Google Scholar 

  • Lade, P.V., Liggio, C.D., Yamamuro, J.A.: Effects of non-plastic fines on minimum and maximum void ratios of sand. ASTM Geotech. Test. J. 21(4), 336–347 (1998)

    Article  Google Scholar 

  • Masson, S., Martinez, J.: Effect of particle mechanical properties on silo flow and stresses from distinct element simulations. Powder Technol. 109(1), 164–178 (2000)

    Article  Google Scholar 

  • Möbius, M.E., Lauderdale, B.E., Nagel, S.R., Jaeger, H.M.: Brazil-nut effect: Size separation of granular particles. Nature 414(6861), 270–270 (2001)

    Article  Google Scholar 

  • Murdoch, N., Rozitis, B., Green, S.F, De Lophem, T.L., Michel, P., Losert, W.: Granular shear flow in varying gravitational environments. Granul. Matter. 15, 129–137 (2013a)

    Article  Google Scholar 

  • Murdoch, N., Rozitis, B., Nordstrom, K., Green, S.F., Michel, P., De Lophem, T.L., Losert, W.: Granular convection in microgravity. Phys. Rev. Lett. 110(1), 018307 (2013b)

    Article  Google Scholar 

  • Opsomer, E., Ludewig, F., Vandewalle, N.: Phase transitions in vibrated granular systems in microgravity. Phys. Rev. E 84(5), 051306 (2011)

    Article  Google Scholar 

  • Rozitis, B., Murdoch, N., Green, S.F, De Lophem, T.L., Michel, P.: Astex microgravity experiment: simulated asteroid regoliths. In: 60th International Astronautical Congress, pp 12–16 (2009)

  • Wang, D.: Experimental study on mechanical properties of sand under moderate or low confining pressure. Master’s thesis, Tongji University (2013)

  • Yu, M.Z., Lin, J.Z., Chen, T.L.: Large eddy simulation of a planar jet flow with nanoparticle coagulation. Acta Mech. Sinica 22(4), 293–300 (2006)

    Article  MATH  Google Scholar 

  • Zheng, H., Huang, Y.: Model tests on flow slide of lunar regolith simulant. Environ. Earth Sci. 73, 4853–4859 (2015)

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 41072202), the Program for New Century Excellent Talents in University (Grant No. NCET-11-0382) and the Key Laboratory of Microgravity, Institute of Mechanics, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Huang.

Additional information

Yu Huang holds PhD degree at Tongji University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Zhu, C., Xiang, X. et al. Liquid-Gas-Like Phase Transition in Sand Flow Under Microgravity. Microgravity Sci. Technol. 27, 155–170 (2015). https://doi.org/10.1007/s12217-015-9424-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-015-9424-2

Keywords

Navigation