Skip to main content

Advertisement

Log in

Geyser Formation in Oxygen when Subjected to fast Acceleration Changes

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

Large bubbles of oxygen are magnetically levitated inside a liquid column of oxygen. Then the magnetic field is rapidly quenched resulting in the formation of a geyser. This configuration reproduces the conditions of rocket re-ignition in orbit. Two bubbles with fill factors 6 % and 15 % were used. Two-dimensional numerical simulations based on VOF-PLIC method are also carried out. Comparison of the experimental, numerical and theoretical results shows good agreement. The method can thus be used for further more focused studies with oxygen for various gravity quenches, fill ratios and pressure values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Amestoy, P.R., Duff, I.S., L’Excellent, J.Y.: Multifrontal parallel distributed symmetric and unsymmetric solvers. Comput. Methods Appl. Mech. Eng. 184, 501–520 (2000)

    Article  MATH  Google Scholar 

  • Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge University Press (1967)

  • Baumbach, V., Hopfinger, E., Cartellier, A.: The transient behaviour of a large bubble in a vertical tube. J. Fluid Mech. 524, 131–142 (2005)

    Article  MATH  Google Scholar 

  • Brackbill, J.U., Kothe, D.B., Zemach, C.: A continuum method for modelling surface tension. J. Comput. Phys. 100, 335–354 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  • Cowley, M.D., Rosensweig, R.E.: The interfacial stability of a ferromagnetic fluid. J. Fluid Mech. 30, 671–688 (1967)

    Article  MATH  Google Scholar 

  • Goda, K.: A multistep technique with implicit difference schemes for calculating two- or three-dimensional cavity flows. J. Comput. Phys. 30, 76 (1979)

    Article  MATH  Google Scholar 

  • Gopala, V.R., Van Wachem, B.G.M.: Volume of fluid methods for immiscible fluid and free-surface flows. Chem. Eng. J. 141, 204–221 (2008)

    Article  Google Scholar 

  • Haggard, J.B., Masica, W.J.: Motion of single bubbles under low gravitational conditions, NASA Technical note D-5462 (1969)

  • Hua, J., Lou, J.: Numerical simulation of bubble rising in viscous liquid. J. Comput. Phys. 222, 769–795 (2007)

    Article  MATH  Google Scholar 

  • Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201–225 (1981)

    Article  MATH  Google Scholar 

  • Kataoka, I.: Local instant formulation of two-phase flow. Int. J. Multiphase Flow 12(5), 745–758 (1986)

    Article  MATH  Google Scholar 

  • Masica, W.J., Petrash, D.A.: Motion of liquid-vapor interface in response to imposed acceleration, NASA Technical note D-3005 (1965)

  • Matula, R.A.: Electrical resistivity of copper, gold, palladium and silver. J. Phys. Chem. Ref. Data 4, 8 (1979)

    Google Scholar 

  • Pichavant, G., Beysens, D., Chatain, D., Communal, D., Lorin, C., Mailfert, A.: Using Superconducting Magnet to Reproduce Quick Variations of Gravity in Liquid Oxygen. Microgravity Sci. Technol. 23 (2), 129–133 (2011)

    Article  Google Scholar 

  • Pianet, G., Vincent, S., Leboi, J., Caltagirone, J.P., Anderhuber, M.: Simulating compressible gas bubbles with a smooth volume tracking 1-fluid method. Int. J. of Multiphase Flow 36(4), 273–283 (2010)

    Article  Google Scholar 

  • Quettier, L., Felice, H., Mailfert, A., Chatain, D., Beysens, D.: Magnetic compensation of gravity forces in liquid/gas mixtures: surpassing intrinsic limitations of a superconducting magnet by using ferromagnetic inserts. Eur. Phys. J. Appl. Phys. 32, 167–175 (2005)

    Article  Google Scholar 

  • Salzman, J.A., Masica, W.J.: Experimental investigation of liquid-propellant reorientation, NASA Technical note D-3789 (1969)

  • Salzman, J.A., Masica, W.J., Lacovic, R.F.: Low gravity reorientation in a scaled model Centaur liquid-hydrogen tank, NASA Technical note D-7168 (1973)

  • Van der Vorst, H.A.: Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of nonsymmetric Linear Systems. SIAM J. Sci. and Stat. Comput. 13(2), 631–644 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  • Walters, J.K., Davidson, J.F.: The initial motion of a gas bubble formed in an inviscid liquid. Part 1. The two-dimensional bubble. J. Fluid Mech. 12, 408–417 (1962)

    Article  Google Scholar 

  • Walters, J.K., Davidson, J.F.: The initial motion of a gas bubble formed in an inviscid liquid. Part 2. The three dimensional bubble and the toroidal bubble. J. Fluid Mech. 17, 321–336 (1963)

    Article  Google Scholar 

  • Youngs, D.L., Morton, K.W., Baines, M.J.: Time-dependent multimaterial flow with large fluid distortion, Numerical Methods for Fluid Dynamics. Academic Press, New York (1982)

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from CNES (France). The authors also thank Dr. Stephane Glockner for his support in the numerical simulations of the in-house code THETIS and the Aquitaine Regional Council for the financial support dedicated to a 256-processor cluster investment, located in the I2M-TREFLE laboratory. We also acknowledge stimulating inputs from Prof. Alain Mailfert and deeply thank the LETI department of CEA Grenoble for providing access to COMSOL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Amiroudine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gandikota, G., Pichavant, G., Chatain, D. et al. Geyser Formation in Oxygen when Subjected to fast Acceleration Changes. Microgravity Sci. Technol. 27, 115–127 (2015). https://doi.org/10.1007/s12217-015-9416-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-015-9416-2

Keywords

Navigation