Abstract
The axial development of the void fraction, interfacial area concentration and Sauter mean bubble diameter profiles of adiabatic air-water bubbly flows in 5.0 and 3.0 mm-diameter pipes were measured using a stereo image processing method under two gravity conditions, vertical upward (normal gravity) and microgravity. The flow measurements were performed at four axial locations. The axial distances from the pipe inlet (z) normalized by the pipe diameter (D) were z/D = 5.5, 34, 72 and 110 for 5.0 mm-diameter pipe and z/D = 15, 62, 120 and 188 for 3.0 mm-diameter pipe. Data were collected for superficial gas and liquid velocities respectively in the ranges of 0.00434–0.0500 m/s and 0.205–0.754 m/s. The effect of gravity on the radial distribution of bubbles and the axial development of two-phase flow parameters is discussed in detail, based on the obtained database. The phase distributions in pipe cross-sections were classified into 3 basic patterns: core peak, intermediate peak and wall peak distributions, based on two normalized parameters: a normalized void peak position and a normalized void peak intensity. Phase distribution pattern maps under normal and microgravity conditions were generated for bubbly flows in 5.0 and 3.0 mm-diameter pipes. The data obtained in the current experiment are expected to contribute to the benchmarking of CFD simulation of void fraction and interfacial area concentration distribution patterns in forced convective pipe flow under microgravity conditions.
Similar content being viewed by others
References
Celata, G.P., Zummo, G.: Flow boiling heat transfer in microgravity: Recent progress. Multiph. Sci. Technol. 21(3), 187–212 (2009). doi:10.1615/MultScienTechn.v21.i3.20
Colin, C., Fabre, J., Dukler, A.E.: Gas-liquid flow at microgravity conditions—I. Dispersed bubble and slug flow. Int. J. Multiphase Flow 17(4), 533–544 (1991). doi:10.1016/0301-9322(91)90048-8
Colin, C., Kamp, A., Fabre, J.: Influence of gravity on void distribution in two-phase gas-liquid flow in pipe. Adv. Space Res. 13(7), 141–145 (1993). doi:10.1016/0273-1177(93)90365-I
Colin, C., Fabre, J.: Gas-liquid pipe flow under microgravity conditions: Influence of tube diameter on flow patterns and pressure drops. Adv. Space Res. 16(7), 137–142 (1995). doi:10.1016/0273-1177(95)00148-8
Colin, C., Fabre, J., McQuillen, J.B.: Bubble and slug flow at microgravity conditions: state of knowledge and open questions. Chem. Eng. Commun. 141-142, 155–173 (1996). doi:10.1080/00986449608936414
Colin, C., Fabre, J., Kamp, A.: Turbulent bubbly flow in pipe under gravity and microgravity conditions. J. Fluid Mech. 711, 469–515 (2012). doi:10.1017/jfm.2012.401
Dukler, A.E., Fabre, J.A., McQuillen, J.B., Vernon, R.: Gas-liquid flow at microgravity condition: Flow patterns and their transitions. Int. J. Multiphase Flow 14, 389–400 (1988). doi:10.1016/0301-9322(88)90017-1
Elkow, K.J., Rezkallah, K.S.: Void fraction measurements in gas-liquid flows under 1-g and μ-g conditions using capacitance sensors. Int. J. Multiphase Flow 23, 815–829 (1997). doi:10.1016/S0301-9322(97)00020-7
Grigoriev, Y.I., Grogorov, E.I., Cykhotsky, V.M., Prokhorov, Y.M., Gorbenco, G.A., Blinkov, V.N., Teniakov, I.E., Malukihin, C.A.: Two-phase heat transport loop of central thermal control system for the international space station “Alpha” Russian segment. AIChE Symp. Ser.–Heat Trans. 310, 9–17 (1996)
Hazuku, T., Takamasa, T., Hibiki, T.: Characteristics of developing vertical bubbly flow under normal and microgravity conditions. Int. J. Multiphase Flow 38(1), 53–66 (2012). doi:10.1016/j.ijmultiphaseflow.2011.08.009
Hibiki, T., Hogsett, S., Ishii, M.: Local measurement of interfacial area, interfacial velocity and liquid turbulence in two-phase flow. Nucl. Eng. Des. 184(2-3), 287–304 (1998). doi:10.1016/S0029-5493(98)00203-9
Hibiki, T., Ishii, M.: One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes. Int. J. Heat Mass Tran. 46, 4935–4948 (2003);. Erratum 48, 1222–1223 (2005). doi:10.1016/S0017-9310(03)00322-3
Hibiki, T., Situ, R., Mi, Y., Ishii, M.: Experimental study on interfacial area transport in vertical upward bubbly two-phase flow in an annulus. Int. J. Heat Mass Tran. 46, 427–441 (2003a). doi:10.1016/S0017-9310(02)00294-6
Hibiki, T., Situ, R., Mi, Y., Ishii, M.: Local flow measurements of vertical upward bubbly flow in an annulus. Int. J. Heat Mass Tran. 46, 1479–1496 (2003b). doi:10.1016/S0017-9310(02)00421-0
Hibiki, T., Ishii, M.: One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes. Int. J. Heat Mass Tran. 46, 4935–4948 (2003). doi:10.1016/S0017-9310(03)00322-3
Hibiki, T., Takamasa, T., Ishii, M., Gabriel, K.: One-dimensional drift-flux model at microgravity conditions. AIAA J. 44, 1635–1642 (2006). doi:10.2514/1.13159
Hibiki, T., Ishii, M.: Lift force in bubbly flow systems. Chem. Eng. Sci. 62(22), 6457–6474 (2007). doi:10.1016/j.ces.2007.07.034
Hibiki, T., Ishii, M.: Interfacial area transport equations for gas-liquid flow. J. Comput. Multiphase Flows 1(1), 1–22 (2009). doi:10.1260/175748209787387089
Ishii, M., Hibiki, T.: Thermo-fluid Dynamics of Two-phase Flow –Second Edition. Springer, New York, USA (2010)
Kocamustafaogullari, G., Ishii, M.: Foundation of the interfacial area transport equation and its closure relations. Int. J. Heat Mass Tran. 38, 481–493 (1995). doi:10.1016/0017-9310(94)00183-V
Lin, C.-H., Hibiki, T.: Databases of interfacial area concentration in gas-liquid two-phase flow. Prog. Nucl. Energy 74, 91–102 (2014). doi:10.1016/j.pnucene.2014.01.015
Mishima, K., Ishii, M.: Flow regime transition criteria for upward two-phase flow in vertical tubes. Int. J. Heat Mass Tran. 27, 723–737 (1984). doi:10.1016/0017-9310(84)90142-X
Narcy, M., De Malmazet, E., Colin, C.: Flow boiling in tube under normal gravity and microgravity conditions. Int. J. Multiphase Flow 60, 50–63 (2014). doi:10.1016/j.ijmultiphaseflow.2013.11.011
Ohta, H.: Experiments on microgravity boiling heat transfer by using transparent heaters. Nucl. Eng. Des. 175(1–2), 167–180 (1997). doi:10.1016/S0029-5493(97)00172-6
Ohta, H.: Microgravity heat transfer in flow boiling. Adv. Heat Transf. 37, 1–76 (2003). doi:10.1016/S0065-2717(03)37001-7
Ohta, H., Baba, S.: Boiling experiments under microgravity conditions. Exp. Heat Tran. 26(2-3), 266–295 (2013). doi:10.1080/08916152.2012.736850
Rezkallah, K.S., Zhao, L.: A flow pattern map for two-phase liquid-gas flows under reduced gravity conditions. Adv. Space Res. 16, 133–136 (1995). doi:10.1016/0273-1177(95)00147-7
Serizawa, A., Kataoka, I.: Phase distribution in two-phase flow In: Transient Phenomena in Multiphase Flow, pp 175–225. Hemisphere, Washington, DC (1988)
Sridhar, K.R., Chao, B.T., Soo, S.L.: Pressure drop in fully developed duct flow of dispersed liquid-vapor mixture at zero gravity. Acta. Astronautica 21, 617–627 (1990). doi:10.1016/0094-5765(90)90073-T
Takamasa, T., Miyoshi, N.: Measurements of bubble interface configurations in vertical bubbly flow using image-processing method Trans. JSME B 59(564), 2403–2409 (1993). doi:10.1299/kikaib.59.2403
Takamasa, T., Iguchi, T., Hazuku, T., Hibiki, T., Ishii, M.: Interfacial area transport of bubbly flow under microgravity environment. Int. J. Multiphase Flow 29(2), 291–304 (2003a). doi:10.1016/S0301-9322(02)00129-5
Takamasa, T., Goto, T., Hibiki, T., Ishii, M.: Experimental study of interfacial area transport of bubbly flow in small-diameter tube. Int. J. Multiphase Flow 29(3), 395–409 (2003b). doi:10.1016/S0301-9322(02)00167-2
Takamasa, T., Hazuku, T., Fukamachi, N., Tamura, N., Hibiki, T., Ishii, M.: Effect of gravity on axial development of bubbly flow at low liquid Reynolds number. Exp. Fluids 37, 631–644 (2004). doi:10.1007/s00348-004-0844-9
Takamasa, T., Watarai, M.: Measurements of bubble interfacial configurations in vertical bubbly flow using stereo image-processing method (SIM) Proc ASME Fluid Engineering Division Summer Meeting, San Diego, USA, FED- 239. Vol. 4, 175-190 (1996)
Tomiyama, A., Kataoka, I., Zun, I., Sakaguchi, T.: Drag coefficients of single bubble under normal and micro gravity conditions. JSME Int. J. Ser B 41(2), 472–479 (1998). doi:10.1299/jsmeb.41.472
Vasavada, S., Sun, X., Ishii, M., Duval, W.: Study of two-phase flows in reduced gravity using ground based experiments. Exp. Fluids 43, 53–75 (2007). doi:10.1007/s00348-007-0321-3
Zhao, J.F., Lin, H., Xie, J.C., Hu, W.R.: Pressure drop of bubbly two-phase flow in a square channel at reduced gravity. Adv. Space Res. 29, 681–686 (2002). doi:10.1016/S0273-1177(01)00671-8
Zhao, L., Rezkallah, K.S.: Pressure drop in gas-liquid flow at microgravity conditions. Int. J. Multiphase Flow 21(5), 837–849 (1995). doi:10.1016/0301-9322(94)00089-3
Zuber, N., Findlay, J.A.: Average volumetric concentration in two-phase flow systems. J. Heat Tran. 87, 453–468 (1965). doi:10.1115/1.3689137
Acknowledgments
The authors are very thankful to Messrs. T. Kikuchi, Y. Takata, S. Watanabe, Y. Fukuhara and Mrs. Y. Ohkubo of Tokyo University of Marine Science and Technology for their assistance in the experiments. Part of this work was supported by the ground-based research program for space utilization promoted by the Japan Space Forum.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hazuku, T., Takamasa, T. & Hibiki, T. Phase Distribution Characteristics of Bubbly Flow in Mini Pipes Under Normal and Microgravity Conditions. Microgravity Sci. Technol. 27, 75–96 (2015). https://doi.org/10.1007/s12217-015-9412-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12217-015-9412-6