Skip to main content

Advertisement

Log in

The Effects of Benzofuran-2-Carboxylic Acid Derivatives as Countermeasures in Immune Modulation and Cancer Cell Inhibition

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

Microgravity and radiation exposure experienced during space flights result in immune system suppression. In long-term spaceflight, the crew is exposed to space radiation, microgravity, infectious agents from other crew members, and microbial contamination, all of which have a significant impact on the body’s immune system and may contribute to the development of autoimmune diseases, allergic reactions, and/or cancer initiation. Many studies have revealed strong effects of microgravity on immune cell function, and microgravity is now considered as one of the major causes of immune dysfunction during space flight (Sundaresan, Int. J. Transp. Phenom. 12(1-2), 93–100, 2011; Martinelli et al., IEEE Eng. Biol. Med. 28(4), 85–90, 2009). We screened two newly synthetized derivatives of benzofuran 2-carboxylic acid, KMEG and KM12. The former KMEG was assessed for lymphoproliferative activities while the latter, KM12, was used in an array of cancer cell lines for testing its cancer inhibiting effects. For ground-based studies, synthetic benzofuran-2-carboxylic acid derivatives were assessed for biological effects in several scenarios, which involved exposure to modeled microgravity and radiation, as well as their immune enhancement and anti-cancer effects. Initial findings indicate that the benzofuran-2-carboxylic acid derivatives possibly have immune enhancing and anti-tumor properties in human lymphocytes and cancer cells exposed to analog spaceflight conditions modeled microgravity and γ-radiation).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anderson, J.H., Gybäck, H., Johansson, A., et al.: 2-Carboxamide-7-piperazinyl-benzofuran derivatives 774, US Pat. 0331341 A1 (2010)

  • Azzam, E.I., de Toledo, S.M., Little, J.B.: Stress signaling from irradiated to non-irradiated cells. Curr. Cancer Drug Targets 4(1), 53–64 (2004)

    Article  Google Scholar 

  • Baraldi, P.G., Romagnoli, R., Beria, I., et al.: Synthesis and antitumor activity of new benzoheterocyclic derivatives of distamycin A. J. Med. Chem. 43(14), 2675–2684 (2000)

    Article  Google Scholar 

  • Baraldi, P.G., Romagnoli, R., Bianchi, N., Gambari, R.: Benzoyl nitrogen mustard derivatives of benzoheterocyclic analogues of netropsin: synthesis and biological activity. Bioorganic and Medicinal Chemistry 11(11), 2381–2388 (2003)

    Article  Google Scholar 

  • Berridge, M.J.: Inositol trisphosphate and calcium signalling. Nature 361, 315–325 (1993)

    Article  Google Scholar 

  • Bhouri, W., Boubaker, J., Skandrani, I., Ghedira, K., Ghedri, C.L.: Investigation of the apoptotic way induced by digallic acid in human lymphoblastoid TK6 cells. Cancer Cell Int. 12(1), 26 (2012)

    Article  Google Scholar 

  • Canova, S., Fiorasi, F., Mognato, M., Grifalconi, M., Reddi, E., Russo, A., Celotti, L.: Modeled microgravity affects cell response to ionizing radiation and increases genomic damage. Radiation Res. 163, 191–199 (2005)

    Article  Google Scholar 

  • Ghosh, A., Greenberg, M.E.: Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science 268, 239–247 (1995)

    Article  Google Scholar 

  • Hoshikawa, H., Indo, K., Mori, T., Mori, N.: Enhancement of the radiation effects by D-allose in head and neck cancer cells. Cancer Lett. Jul. 1 306(1), 60–6 (2011)

    Article  Google Scholar 

  • Jackson, Y.A., Marriott, K.-S.C.: Synthesis of 2,3-Dimethoxy-7-methyl-7,12-dihydro-6H-[1]-benzofuro-[2,3-c]-[1]-benzazepin-6,12-dione. Molecules 7, 353–362 (2002)

    Article  Google Scholar 

  • Kadhim, M.A., Lorimore, S.A., Townsend, K.M., Goodhead, D.T., Buckle, V.J., Wright, E.G.: Radiation-induced genomic instability: delayed cytogenetic aberrations and apoptosis in primary human bone marrow cells. Int. J. Radiat. Biol. 67, 287–293 (1995)

    Article  Google Scholar 

  • Kossakowski, J., Ostrowska, K, Hejchman, E., Wolska, I.: Synthesis and structural characterization of derivatives of 2- and 3-benzo[b]furan carboxylic acids with potential cytotoxic activity. Farmaco 60(6-7), 519–527 (2005)

    Article  Google Scholar 

  • Kronenberg, A.: Radiation-induced genomic instability. Int. J. Radiat. Biol. 66, 603–609 (1994)

    Article  Google Scholar 

  • Mane B.Y., Agasimundin Y.S., Shivakumar B.: Synthesis of benzofuran analogs of fenamates as non steroidal antiinflammatory agents. Indian Journal of Chemistry 49(2), 264–269 (2010)

  • Lee, H.C., Kim, D.W., Jung, K.Y., Park, I.C., Park, M.J., Kim, M.S., Woo, S.H., Rhee, C.H., Yoo, H., Lee, S.H., Hong, S.I.: Increased expression of antioxidant enzymes in radioresistant variant from U251 human glioblastoma cell line. Int. J. Mol. Med. Jun. 13(6), 883–7 (2004)

    Google Scholar 

  • Levy, J.A., Virolainen, M., Defendi, V.: Human lymphoblastoid lines from lymph node and spleen. Cancer 22, 517–524 (1968)

    Article  Google Scholar 

  • Liber, H.L., Thilly, W.G.: Mutation assay at the thymidine kinase locus in diploid human lymphoblasts. Mutat. Res. 94, 467–485 (1982)

    Article  Google Scholar 

  • Mangala, L.S., Zhang, Y., He, Z., Emami, K., Ramesh, G.T., Story, M., Rohde, L.H., Wu, H.: Effects of Simulated Microgravity on Expression Profile of MicroRNA in Human Lymphoblastoid Cells. J. Biol. Chem. 286(37), 32483–32490 (2011)

    Article  Google Scholar 

  • Marriott, K.-S.C., Bartee, R., Morrison, A.Z., Stewart, L., Wesby, J.: Expedited synthesis of benzofuran-2-carboxylic acids via microwave-assisted Perkin rearrangement reaction. Tetrahedron Lett. 53(26), 3319–3321 (2012)

    Article  Google Scholar 

  • Martinelli, L.K., Russomano, T., Santos, M.A., Falcão, F.P., Bauer, M.E., Machado, A., Sundaresan, A.: Effect of microgravity on immune cell viability and proliferation-simulation using a 3D clinostat. IEEE Eng. Biol. Med. 28(4), 85–90 (2009)

    Article  Google Scholar 

  • Mohr, P., Nettekoven, M., Plancher, J., et al.: Benzofuran and benzothiophene-2-carboxylic acids amide derivatives. US Pat. 0029976, A1 (2009)

    Google Scholar 

  • Morgan, W.F., Day, J.P., Kaplan, M.I., McGhee, E.M., Limoli, C.L.: Genomic instability induced by ionizing radiation. Radiat. Res. 146, 247–258 (1996)

    Article  Google Scholar 

  • Patel, V.F., Andis, S.L., Enkema, J.K., et al.: Total synthesis of seco (+ )- and ent-(−)-oxaduocarmycin SA: construction of the (chloromethyl)indoline alkylating subunit by a novel intramolecular aryl radical cyclization onto a vinyl chloride. J. Org. Chem. 62(25), 8868–8874 (1997)

    Article  Google Scholar 

  • Perkin, W.H.: J. Chem. Soc. 23, 368 (1870)

    Article  Google Scholar 

  • Sundaresan, A., Risin, D., Pellis, N.R.: Loss of Signal transduction and inhibition of lymphocyte locomotion in a ground based model of microgravity. In vitro cell. dev. biol. 38(2), 118–122 (2002)

    Article  Google Scholar 

  • Sundaresan, A., Risin, D., Pellis, N.R.: Modeled microgravity-induced protein kinase C isoform expression in human lymphocytes (2004a)

  • Sundaresan, A., Risin, D., Pellis, N.R.: Cell Growth in Microgravity. In: Meyers, R.A., Sendtko, A., Henheik, P. (eds.) Encyclopedia of Molecular Cell Biology and Molecular Medicine, vol. 2, pp. 303–321. Wiley-VCH, Weinheim (2004b)

    Google Scholar 

  • Sundaresan, A., Pellis, N.R.: Cellular and genetic adaptation in low gravity environments. Gene Regulation in modeled microgravity. Ann. NY Acad. Sci. 1161, 135–146 (2009)

    Article  Google Scholar 

  • Sundaresan, A.: A Possible Cardiovascular Predictor of Susceptibility to Microgravity. Int. J. Transp. Phenom. 12(1-2), 93–100 (2011)

    Google Scholar 

  • Varshney, R., Dwarakanath, B., Jain, V.: Radiosensitization by 6-aminonicotinamide and 2-deoxy-D-glucose in human cancer cells. Int. J. Radiat. Biol. 81(5), 397–408 (2005)

    Article  Google Scholar 

  • Wang, Y., Li, L., Ye, W., et al.: CC-1065 analogues bearing different DNA-binding subunits: synthesis, antitumor activity, and preliminary toxicity study. J. Med. Chem. 46(4), 634–637 (2003)

    Article  Google Scholar 

  • Zhang, Q, Zhang, C, Yang, X, Yang, B, Wang, J, Kang, Y, Wang, Z, Li, D, Huang, G, Ma, Z, Sun, X, Cai, J, Tao, G, Dai, S, Mao, W, Ma, J.: Berberine inhibits the expression of hypoxia induction factor-1alpha and increases the radiosensitivity of prostate cancer. Diagn. Pathol. 27 9(1), 98 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sundaresan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sundaresan, A., Marriott, K., Mao, J. et al. The Effects of Benzofuran-2-Carboxylic Acid Derivatives as Countermeasures in Immune Modulation and Cancer Cell Inhibition. Microgravity Sci. Technol. 27, 129–140 (2015). https://doi.org/10.1007/s12217-014-9408-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-014-9408-7

Keywords

Navigation