Abstract
The complex macroscopic rheological behavior of granular flow contains elements of both solid and liquid flow. Furthermore, under microgravity, granular flow exhibits novel flow features. To overcome a lack of comprehensive analyses of granular flow under microgravity, this study reviews the microgravity platforms and devices under which granular flow can be observed, the experimental findings made in such settings, and the range of numerical simulations that can be used to examine granular flow under microgravity. Differences in experimental research between normal gravity and microgravity are highlighted. These differences are found in the modifications made to conventional granular flow experimental devices, in new or unique granular flow behaviors, and in the numerical simulation methods needed for microgravity modeling. Additionally, the benefits of numerical simulation methods for examining rapid and dense flows under microgravity are also discussed. This study may have wide-ranging implications in such fields as investigations of the surface geology of asteroids or the efficient design and development of anchoring mechanisms or space vehicles.
Similar content being viewed by others
References
Alam, M., Arakeri, V.H., Nott, P.R., Goddard, J.D., Herrmann, H.J.: Instability-induced ordering, universal unfolding and the role of gravity in granular Couette flow. J. Fluid Mech. 523, 277–306 (2005)
Alexandrov, S.E.: Singular solutions in an axisymmetric flow of a medium obeying the double shear model. J. Appl. Mech. Tech. Phys. 46(5), 766–771 (2005)
Bagnold, R.A.: Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc. R. Soc. Lond. A. 225, 49–63 (1954)
Bannerman, M.N., Kollmer, J.E., Sack, A., Heckel, M., Mueller, P., Pöschel, T.: Movers and shakers: Granular damping in microgravity. Phys. Rev. E. 84, 011301 (2011)
Baran, O., Ertas, D., Halsey, T.C., Grest, G.S., Lechman, J.B.: Velocity correlations in dense gravity-driven granular chute flow. Phys. Rev. E. 74, 051302 (2006)
Blum, J.: Astrophysical microgravity experiments with dust particles. Microgravity Sci. Technol. 22, 517–527 (2010)
Bossis, G., Grasselli, Y., Volkova, O.: Granular rheology in zero gravity. J. Phys. Condens. Matter 16, 3279–3287 (2004)
Brucks, A., Arndt, T., Ottino, J.M., Lueptow, R.M.: Behavior of flowing granular materials under variable g. Phys. Rev. E. 75, 032301 (2007)
Brucks, A., Richter, L., Vincent, J.-B., Blum, J.: Effect of reducedgravity conditions on the flowability of granular media. Earth & Space 2008: Engineering, Science, Construction, and Operations in Challenging Environments, 1–8 (2008)
Colwell, J.E., Taylor, M.: Low-velocity microgravity impact experiments into simulated regolith. Icarus 138, 241–248 (1999)
Colwell, J.E.: Low velocity impacts into dust: Results from the COLLIDE-2 microgravity experiment. Icarus 164, 188–196 (2003)
Corwin, E.I.: Granular flow in a rapidly rotated system with fixed walls. Phys. Rev. E 77, 031308 (2008)
Dorbolo, S., Scheller, T., Ludewig, F., Lumay, G., Vandewalle, N.: Influence of a reduced gravity on the volume fraction of a monolayer of spherical grains. Phys. Rev. E 84(4), 041305 (2011)
Dorbolo, S., Maquet, L., Brandenbourger, M., Ludewig, F., Lumay, G., Caps, H., Vandewalle, N., Rondia, S., Mélard, M., Loon, J. van., Dowson, A., Vincent-Bonnieu, S.: Influence of the gravity on the discharge of a silo. Granul. Matter 15(3), 263–273 (2013)
Esipov, S.E., Pöschel, T.: The granular phase diagram. J. Stat. Phys. 86, 1385–1395 (1997)
Forterre, Y., Pouliquen, O.: Flows of dense granular media. Annu. Rev. Fluid Mechnics. 40, 1–24 (2008)
Fortin, J., Millet, O., De, S.G.: Numerical simulation of granular materials by an improved discrete element method. Int. J. Numer. Methods Eng. 62(5), 639–663 (2005)
GDR MiDi: On dense granular flows. Eur. Phys. J. E 14, 341–365 (2004)
Harris, D.: A unified formulation for plasticity models of granular and other materials. Proc. R. Soc. Lond. A. 450(1938), 37–49 (1995)
Hertz, H.: On the contact of elastic solids. J.reine angew. Math 92, 156–171 (1881)
Hofmeister, P.G., Blum, J., Heißelmann, D.: The flow of granular matter under reduced-gravity conditions. Powders & Grains 2009: Proceedings of the 6th International Conference on Micromechanics of Granular Media. AIP Conf. Proc. 1145, 71–74 (2009)
Hrenya, C.M.: Extraction of transport coefficients from molecular dynamics simulations of granular flows: a perspective. Ind. Eng. Chem. Res. 49(11), 5304–5309 (2010)
Huang, Y., Zhang, W., Mao, W., Jin, C.: Flow analysis of liquefied soils based on smoothed particle hydrodynamics. Nat. Hazards 59, 1547–1560 (2011)
Huang, Y., Zhang, W., Xu, Q., Xie, P., Hao, L.: Run-out analysis of flow-like landslides triggered by the Ms 8.0 2008 Wenchuan earthquake using smoothed particle hydrodynamics. Landslides 9, 275–283 (2012)
Huang, Y., Dai, Z., Zhang, W., Huang, M.: SPH-based numerical simulations of flow slides in municipal solid waste landfills. Waste Manag. Res. 31, 256–264 (2013a)
Huang, Y., Mao, W.: First results derived from a drop-tower testing system for granular flow in a microgravity environment. Landslides 10, 493–501 (2013b)
Louge, M.Y., Jenkins, J.T., Reeves, A., Keast, S.: Microgravity segregation in collisional granular shearing flows. Solid Mech. Appl. 81, 103–112 (2000)
Jean, M.: The non-smooth contact dynamics method. Computer Methods in Applied Mechanics and Engineering 177, 235–257 (1999)
Masson, S., Martinez, J.: Effect of particle mechanical properties on silo flow and stresses from distinct element simulations. Powder Technol. 109, 164–178 (2000)
Miyamoto, H., Yano, H., Scheeres, D.J., Abe, S., Barnouin-Jha, O., Cheng, A.F., Sasaki, S.: Regolith migration and sorting on asteroid Itokawa. Science 316(5827), 1011–1014 (2007)
Möbius, M.E., Lauderdale, B.E., Nagel, S.R., Jaeger, H.M.: Brazil-nut effect: Size separation of granular particles. Nature 414, 270–270 (2001)
Murdoch, N., Rozitis, B., Green, S.F, de Lophem, T.L., Michel, P., Losert, W.: Granular shear flow in varying gravitational environments. Granul. Matter 15, 129–137 (2013a)
Murdoch, N., Rozitis, B., Nordstrom, K., Green, S.F., Michel, P, de Lophem, T.L., Losert, W.: Granular convection in microgravity. Phys. Rev. Lett. 110, 018307 (2013b)
Myo, K.S., Zhou, W., Yu, S., Hua, W.: Direct Monte Carlo simulations of air bearing characteristics on patterned media. IEEE Trans. Magn. 47(10), 2660–2663 (2011)
Nakashima, H., Shioji, Y., Kobayashi, T., Aoki, S.: Numerical analysis of sand flow under low gravity condition. Proceedings of the Joint North America, Asia-Pacific ISTVS Conference and Annual Meeting of Japanese Society for Terramechanics, Fairbanks, pp. 1–10 (2007)
Nguyen, V.D., Cogné, C., Guessasma, M., Bellenger, E., Fortin, J.: Discrete modeling of granular flow with thermal transfer: application to the discharge of silos. Appl. Therm. Eng. 29, 1846–1853 (2009)
Rajchenbach, J.: Flow in powders: From discrete avalanches to continuous regime. Phys. Rev. Lett. 65(18), 2221–2224 (1990)
Roth, R., Evans, R., Lang, A., Kahl, G.: Fundamental measure theory for hard-sphere mixtures revisited: the White Bear version. J. Phys. Condens. Matter 14(46), 12063 (2002)
Rozitis, B., Murdoch, N., Green, S.F, de Lophem, T.L., Michel, P.: Astex microgravity experiment: simulated asteroid regoliths. In: 60th International Astronautical Congress, pp 12–16 (2009)
Sanni, I., Bellenger, E., Fortin, J., Coorevits, P.: A reliable algorithm to solve 3D frictional multi-contact problems: application to granular media. J. Comput. Appl. Math. 234, 1161–1171 (2010)
Sun, Q.C, Wang, G.Q.: Introduction to granular matter mechanics. Science Press, Beijing (2009). (in Chinese)
Thomas, V.A., Prasad, N.S., Reddy, C.A.M.: Microgravity research platforms-A study. Curr. Sci. 79(3), 336–340 (2000)
Acknowledgments
This work was supported by the National Natural Science Foundation of China (Grant Nos. 41372355 and 41072202), the Program for New Century Excellent Talents in University (Grant No. NCET-11-0382) and the Key Laboratory ofMicrogravity, Institute of Mechanics, Chinese Academy of Sciences.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Huang, Y., Zhu, C. & Xiang, X. Granular Flow Under Microgravity: A Preliminary Review. Microgravity Sci. Technol. 26, 131–138 (2014). https://doi.org/10.1007/s12217-014-9391-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12217-014-9391-z