Skip to main content
Log in

Granular Flow Under Microgravity: A Preliminary Review

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

The complex macroscopic rheological behavior of granular flow contains elements of both solid and liquid flow. Furthermore, under microgravity, granular flow exhibits novel flow features. To overcome a lack of comprehensive analyses of granular flow under microgravity, this study reviews the microgravity platforms and devices under which granular flow can be observed, the experimental findings made in such settings, and the range of numerical simulations that can be used to examine granular flow under microgravity. Differences in experimental research between normal gravity and microgravity are highlighted. These differences are found in the modifications made to conventional granular flow experimental devices, in new or unique granular flow behaviors, and in the numerical simulation methods needed for microgravity modeling. Additionally, the benefits of numerical simulation methods for examining rapid and dense flows under microgravity are also discussed. This study may have wide-ranging implications in such fields as investigations of the surface geology of asteroids or the efficient design and development of anchoring mechanisms or space vehicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alam, M., Arakeri, V.H., Nott, P.R., Goddard, J.D., Herrmann, H.J.: Instability-induced ordering, universal unfolding and the role of gravity in granular Couette flow. J. Fluid Mech. 523, 277–306 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Alexandrov, S.E.: Singular solutions in an axisymmetric flow of a medium obeying the double shear model. J. Appl. Mech. Tech. Phys. 46(5), 766–771 (2005)

    Article  MathSciNet  Google Scholar 

  • Bagnold, R.A.: Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc. R. Soc. Lond. A. 225, 49–63 (1954)

  • Bannerman, M.N., Kollmer, J.E., Sack, A., Heckel, M., Mueller, P., Pöschel, T.: Movers and shakers: Granular damping in microgravity. Phys. Rev. E. 84, 011301 (2011)

    Article  Google Scholar 

  • Baran, O., Ertas, D., Halsey, T.C., Grest, G.S., Lechman, J.B.: Velocity correlations in dense gravity-driven granular chute flow. Phys. Rev. E. 74, 051302 (2006)

    Article  Google Scholar 

  • Blum, J.: Astrophysical microgravity experiments with dust particles. Microgravity Sci. Technol. 22, 517–527 (2010)

    Article  Google Scholar 

  • Bossis, G., Grasselli, Y., Volkova, O.: Granular rheology in zero gravity. J. Phys. Condens. Matter 16, 3279–3287 (2004)

    Article  Google Scholar 

  • Brucks, A., Arndt, T., Ottino, J.M., Lueptow, R.M.: Behavior of flowing granular materials under variable g. Phys. Rev. E. 75, 032301 (2007)

    Article  Google Scholar 

  • Brucks, A., Richter, L., Vincent, J.-B., Blum, J.: Effect of reducedgravity conditions on the flowability of granular media. Earth & Space 2008: Engineering, Science, Construction, and Operations in Challenging Environments, 1–8 (2008)

  • Colwell, J.E., Taylor, M.: Low-velocity microgravity impact experiments into simulated regolith. Icarus 138, 241–248 (1999)

    Article  Google Scholar 

  • Colwell, J.E.: Low velocity impacts into dust: Results from the COLLIDE-2 microgravity experiment. Icarus 164, 188–196 (2003)

    Article  Google Scholar 

  • Corwin, E.I.: Granular flow in a rapidly rotated system with fixed walls. Phys. Rev. E 77, 031308 (2008)

    Article  Google Scholar 

  • Dorbolo, S., Scheller, T., Ludewig, F., Lumay, G., Vandewalle, N.: Influence of a reduced gravity on the volume fraction of a monolayer of spherical grains. Phys. Rev. E 84(4), 041305 (2011)

    Article  Google Scholar 

  • Dorbolo, S., Maquet, L., Brandenbourger, M., Ludewig, F., Lumay, G., Caps, H., Vandewalle, N., Rondia, S., Mélard, M., Loon, J. van., Dowson, A., Vincent-Bonnieu, S.: Influence of the gravity on the discharge of a silo. Granul. Matter 15(3), 263–273 (2013)

    Article  Google Scholar 

  • Esipov, S.E., Pöschel, T.: The granular phase diagram. J. Stat. Phys. 86, 1385–1395 (1997)

    Article  MATH  Google Scholar 

  • Forterre, Y., Pouliquen, O.: Flows of dense granular media. Annu. Rev. Fluid Mechnics. 40, 1–24 (2008)

    Article  MathSciNet  Google Scholar 

  • Fortin, J., Millet, O., De, S.G.: Numerical simulation of granular materials by an improved discrete element method. Int. J. Numer. Methods Eng. 62(5), 639–663 (2005)

    Article  MATH  Google Scholar 

  • GDR MiDi: On dense granular flows. Eur. Phys. J. E 14, 341–365 (2004)

    Article  Google Scholar 

  • Harris, D.: A unified formulation for plasticity models of granular and other materials. Proc. R. Soc. Lond. A. 450(1938), 37–49 (1995)

  • Hertz, H.: On the contact of elastic solids. J.reine angew. Math 92, 156–171 (1881)

    Google Scholar 

  • Hofmeister, P.G., Blum, J., Heißelmann, D.: The flow of granular matter under reduced-gravity conditions. Powders & Grains 2009: Proceedings of the 6th International Conference on Micromechanics of Granular Media. AIP Conf. Proc. 1145, 71–74 (2009)

    Article  Google Scholar 

  • Hrenya, C.M.: Extraction of transport coefficients from molecular dynamics simulations of granular flows: a perspective. Ind. Eng. Chem. Res. 49(11), 5304–5309 (2010)

    Article  Google Scholar 

  • Huang, Y., Zhang, W., Mao, W., Jin, C.: Flow analysis of liquefied soils based on smoothed particle hydrodynamics. Nat. Hazards 59, 1547–1560 (2011)

    Article  Google Scholar 

  • Huang, Y., Zhang, W., Xu, Q., Xie, P., Hao, L.: Run-out analysis of flow-like landslides triggered by the Ms 8.0 2008 Wenchuan earthquake using smoothed particle hydrodynamics. Landslides 9, 275–283 (2012)

    Article  Google Scholar 

  • Huang, Y., Dai, Z., Zhang, W., Huang, M.: SPH-based numerical simulations of flow slides in municipal solid waste landfills. Waste Manag. Res. 31, 256–264 (2013a)

    Article  Google Scholar 

  • Huang, Y., Mao, W.: First results derived from a drop-tower testing system for granular flow in a microgravity environment. Landslides 10, 493–501 (2013b)

    Article  Google Scholar 

  • Louge, M.Y., Jenkins, J.T., Reeves, A., Keast, S.: Microgravity segregation in collisional granular shearing flows. Solid Mech. Appl. 81, 103–112 (2000)

    Google Scholar 

  • Jean, M.: The non-smooth contact dynamics method. Computer Methods in Applied Mechanics and Engineering 177, 235–257 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Masson, S., Martinez, J.: Effect of particle mechanical properties on silo flow and stresses from distinct element simulations. Powder Technol. 109, 164–178 (2000)

    Article  Google Scholar 

  • Miyamoto, H., Yano, H., Scheeres, D.J., Abe, S., Barnouin-Jha, O., Cheng, A.F., Sasaki, S.: Regolith migration and sorting on asteroid Itokawa. Science 316(5827), 1011–1014 (2007)

    Article  Google Scholar 

  • Möbius, M.E., Lauderdale, B.E., Nagel, S.R., Jaeger, H.M.: Brazil-nut effect: Size separation of granular particles. Nature 414, 270–270 (2001)

    Article  Google Scholar 

  • Murdoch, N., Rozitis, B., Green, S.F, de Lophem, T.L., Michel, P., Losert, W.: Granular shear flow in varying gravitational environments. Granul. Matter 15, 129–137 (2013a)

    Article  Google Scholar 

  • Murdoch, N., Rozitis, B., Nordstrom, K., Green, S.F., Michel, P, de Lophem, T.L., Losert, W.: Granular convection in microgravity. Phys. Rev. Lett. 110, 018307 (2013b)

    Article  Google Scholar 

  • Myo, K.S., Zhou, W., Yu, S., Hua, W.: Direct Monte Carlo simulations of air bearing characteristics on patterned media. IEEE Trans. Magn. 47(10), 2660–2663 (2011)

    Article  Google Scholar 

  • Nakashima, H., Shioji, Y., Kobayashi, T., Aoki, S.: Numerical analysis of sand flow under low gravity condition. Proceedings of the Joint North America, Asia-Pacific ISTVS Conference and Annual Meeting of Japanese Society for Terramechanics, Fairbanks, pp. 1–10 (2007)

  • Nguyen, V.D., Cogné, C., Guessasma, M., Bellenger, E., Fortin, J.: Discrete modeling of granular flow with thermal transfer: application to the discharge of silos. Appl. Therm. Eng. 29, 1846–1853 (2009)

    Article  Google Scholar 

  • Rajchenbach, J.: Flow in powders: From discrete avalanches to continuous regime. Phys. Rev. Lett. 65(18), 2221–2224 (1990)

    Article  Google Scholar 

  • Roth, R., Evans, R., Lang, A., Kahl, G.: Fundamental measure theory for hard-sphere mixtures revisited: the White Bear version. J. Phys. Condens. Matter 14(46), 12063 (2002)

    Article  Google Scholar 

  • Rozitis, B., Murdoch, N., Green, S.F, de Lophem, T.L., Michel, P.: Astex microgravity experiment: simulated asteroid regoliths. In: 60th International Astronautical Congress, pp 12–16 (2009)

  • Sanni, I., Bellenger, E., Fortin, J., Coorevits, P.: A reliable algorithm to solve 3D frictional multi-contact problems: application to granular media. J. Comput. Appl. Math. 234, 1161–1171 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Sun, Q.C, Wang, G.Q.: Introduction to granular matter mechanics. Science Press, Beijing (2009). (in Chinese)

    Google Scholar 

  • Thomas, V.A., Prasad, N.S., Reddy, C.A.M.: Microgravity research platforms-A study. Curr. Sci. 79(3), 336–340 (2000)

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 41372355 and 41072202), the Program for New Century Excellent Talents in University (Grant No. NCET-11-0382) and the Key Laboratory ofMicrogravity, Institute of Mechanics, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Zhu, C. & Xiang, X. Granular Flow Under Microgravity: A Preliminary Review. Microgravity Sci. Technol. 26, 131–138 (2014). https://doi.org/10.1007/s12217-014-9391-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-014-9391-z

Keywords

Navigation