Abstract
The behavior of matter near a 2nd order phase transition is expected to obey universal features. In particular, fluids, liquid mixtures, polymers, which belong to the same class of universality (the class of fluids) should exhibit the same universal scaling laws for many thermodynamics and kinetic parameters. Critical point slowing down is the most notorious. Such divergence or convergence makes the class of fluids extremely sensitive to even minute external disturbances and especially gravity: on earth the fluid becomes compressed under its own weight. Compensating for these effects by space experiments and/or magnetic forces or isotopic density matching has led to enlarge our vision of universality for phase transition. New phenomena have been discovered by suppressing gravity effects, as the thermal “Piston Effect”, which leads to a paradoxical critical point speeding up and the apparent violation of the 2nd thermodynamic law. Another finding is concerned with the use of critical slowing down and weightlessness to investigate the dynamics of phase separation with no gravity-induced sedimentation. The key role of the coalescence of domains makes valid only two simple growth laws. The latter can be successfully applied to a quite different situation, the evolution laws in the well-known biological problem of sorting of embryonic cells. Due to the extreme sensitivity of fluids near their critical point, the effect of vibration can be investigated in much detail, using only one fluid, which represents the whole class of fluids. The investigation of the above thermal and phase transition problems under vibrations indeed suggests that a periodic excitation can act as a kind of artificial gravity, which induces thermal convection, speeds up phase transition and localizes the liquid and vapor phases perpendicular to it.
This is a preview of subscription content, access via your institution.

















References
Agayan, V.A., Anisimov, M.A., Sengers, J.V.: Crossover parametric equation of state for Ising-like systems. Phys. Rev. E 64. 026125- 026144 (2001)
Amiroudine, S., Bontoux, P., Larroudé, P., Gilly, B., Zappoli, B.: Direct numerical simulation of instabilities in a two-dimensional near-critical fluid layer heated from below. J. Fluid Mech 442, 119–140 (2001)
Amiroudine, S., Beysens, D.: Thermovibrational instability in supercritical fluids under weightlessness, Phys. Rev. E 78. 036325-1 - 036325-7 (2008)
Bailly, D., Zappoli, B.: Hydrodynamic theory of density relaxation in near-critical fluids. Phys. Rev. E 62, 2353–2368 (2000)
Behringer, R.P., Onuki, A., Meyer, H.: Thermal equilibration of fluids near the liquid-vapor critical point: 3He and3He-4He mixtures. J. Low Temp. Phys 81, 71–102 (1990)
Beysens, D.: Critical point phenomena in fluids. Proc. of the 4th European Symposium on Materials Sciences under Microgravity, Madrid, Spain, 5-8 April 1983. ESA SP 191, 367–376 (1983a)
Beysens, D., Gbadamassi, M., Bouanz, M.: New developments in the study of binary fluids under shear flow. Phys. Rev. A 28, 2491–2509 (1983b)
Beysens, D., Guenoun, P., Perrot, F.: Phase separation of critical binary fluids under microgravity : comparison with matched-density conditions. Phys. Rev A38, 4173–4185 (1988)
Beysens, D., Garrabos, Y.: The phase transition of gas and liquids. Physica A 281, 361–380 (2000a). and refs. therein.
Beysens, D.A., Forgacs, G., Glazier, J.A.: Cell sorting is analogous to phase ordering in fluids. P.N.A.S. 97, 9467–71 (2000b)
Beysens, D., Chatain, D., Evesque, P., Garrabos, Y.: High frequency driven capillary flows speed up the gas-liquid phase transition in zero-gravity conditions. Phys. Rev. Lett. 95, Lett. 95. 034502-1- 034502-2 (2005)
Beysens, D., Chatain, D., Garrabos, Y., Evesque, P, Lecoutre, C., Palencia, F., Nikolayev, V.: The effect of vibrations on heterogeneous fluids : some studies in weightlessness. Acta Astronautica 61, 1002–1009 (2007)
Beysens, D., Chatain, D., Evesque, P., Garrabos, Y.: Nucleation and growth of a bubble pattern under vibrations in weightlessness. EuroPhys, Lett 82, 36003 (2008)
Beysens, D., Garrabos, Y., Chatain, D., Evesque, P.: Phase transition under forced vibrations in critical CO2. EuroPhys. Lett 86, 16003 (2009)
Beysens, D., Chatain, D., Nikolayev, V.S., Ouazzani, J., Garrabos, Y.: Possibility of long-distance heat transport in weightlessness using supercritical fluids. Phys. Rev. E 82. 061126 -1- 061126 -11 (2010)
Beysens, D., Fröhlich, T., Garrabos, Y.: Heat can cool near-critical fluids. Phys. Rev. 84. 051201-1-051201-8 (2011)
Binder, K., Stauffer, D.: Theory for the slowing down of the relaxation and spinodal decomposition of binary mixtures. Phys. Rev. Lett. 33. 1006- 1009 (1974)
Boukari, H., Shaumeyer, J.N., Briggs, M.E., Gammon, R.W.: Critical speeding up in pure fluids. Phys. Rev., A 41, 2260–2263 (1990a)
Boukari, H., Briggs, M.E., Gammon, R.W.: Critical speeding up observed. Phys. Rev. Lett 65, 2654–2658 (1990b)
Cagniard de la Tour, C.: Exposé de quelques résultats obtenu par l’action combinée de la chaleur et de la compression sur certains liquides, tels que l’eau, l’alcool, l’éther sulfurique et l’essence de pétrole rectifiée. Ann. Chim. Phys. Paris 21, 127–178 (1822)
Fauve, S., Kumar, K., Laroche, C., Beysens, D., Garrabos, Y.: Parametric Instability of has Liquid-Vapor Interface Closed to the Critical Point. Phys. rev. Lett 68, 3160–3163 (1992)
Ferrel, R.A., Hao, H.: Adiabatic temperature changes in a single component fluid near the liquid-vapor critical point. Physica A 197, 23–46 (1993)
Fisher, M.: Correlation functions and the critical region of simple fluids. J. Math. Phys 5, 944–962 (1964)
Frohlich, T., Beysens, D., Garrabos, Y.: Piston-effect-induced thermal jets in near-critical fluids. Phys. Rev. E 74. 046307 (2006)
Gandikota, G., Amiroudine, S., Chatain, D., Lyubimova, T., Beysens, D.: Rayleigh and parametric thermo-vibrational instabilities in supercritical fluids under weightlessness, Physics of Fluids 25. 064103-1 (2013)
Gandikota, G., Chatain, D., Lyubimova, T., Beysens, D.: Dynamic equilibrium under vibrations of H2 liquid-vapor interface at various g-levels. Phys. Rev. E 89. 063003-1-013022-7. in press (2014a)
Gandikota, G., Chatain, D., Amiroudine, S., Lyubimova, T., Beysens, D.: Faraday instability in a near-critical fluid under weightlessness. Phys. Rev. E 89. 013022-1-013022-9 (2014b)
Gandikota, G., Chatain, D., Amiroudine, S., Lyubimova, T., Beysens, D.: Frozen wave instability in near critical hydrogen subjected to horizontal vibration under various gravity fields. Physical Review E 89. 012309-1-012309-11 (2014c)
Garrabos, Y., Le Neindre, B., Subra, P., Cansell, F., Pommier, C.: Fluides critiques et gravité, fluides supercritiques et matériaux. Ann. Chim. Fr 17, 55–90 (1992)
Garrabos, Y., Bonetti, M., Beysens, D., Perrot, F., Frohlich, T., Carles, P., Zappoli, B.: Relaxation of a supercritical fluid after a heat pulse in absence of gravity effects. Theory and experiments. Phys. Rev. E 57, 5665–5681 (1998)
Garrabos, Y.C., Lecoutre-Chabot, C., Hegseth, J., Nikolayev, V.S., Beysens, D., Delville, J.-P.: Gas spreading on a heated wall wetted by liquid, Phys. Rev. E 64. 051602-1–10 (2001)
Garrabos, Y., Beysens, D., Lecoutre, C., Dejoan, A., Polezhaev, V., Emelianov, V.: Thermoconvectional phenomena induced by vibrations in supercritical SF6 under weightlessness. Phys. Rev. E 75, 056317-1 056317-, 11 (2007)
Gershuni, G.Z., Lyubimov, D.V.: Thermal Vibrational Convection. Wiley, New-York (1998)
Ginzburg, V.L., Ginzburgm, V.L.: (1960) Some remarks on second order phase transitions and microscopic theory of ferroelectrics, Fiz. Tverd. Tela (Leningrad) 2, 2031–2043 [Sov. Phys. Solid State 2, 1824] (1960)
Houessou, C., Guenoun, P., Gastaud, R., Perrot, F., Beysens, D.: Critical behavior of the binary fluids cyclohexane-methanol, deuterated cyclohexane-methanol and of their isodensity mixture. Application to microgravity simulations and wetting phenomena. Phys. Rev. A 32, 1818–1833 (1985)
Jacobs, D.T., Lau, S.M., Mukherjee, A., Williams, C.A.: Measuring turbidity in a near-critical, liquid–liquid system: A precise, automated experiment. Int. J. Thermophys. 20, 877–887 (1999)
Kawasaki, K.: Kinetic equations and time correlation functions of critical fluctuations. Ann. Phys. N.Y. 61, 1–56 (1970)
Kumar, K., Tuckerman, L.S.: Parametric instability of the interface between two fluids. J. Fluid Mech 279, 49–68 (1994)
Lyubimov, D.V., Cherepanov, A.A.: Development of a steady relief at the interface of fluids in a vibrational field. Fluids Dynamics 21, 849–854 (1987)
Lyubimov, D.V., Lyubimova, T.P., Shklyaev, S. V. Behaviour of a drop (bubble) in a pulsating flow near vibrating rigid surface. Proc. of the 1st International Symposium on Microgravity Research & Applications in Physical Sciences and Biotechnology, Sorrento, Italy, September 10–15, 2000. ESA SP 454, 879–886 (2001)
Nikolayev, V., Beysens, D., Guenoun, P.: New hydrodynamic mechanism for drop coarsening. Phys. Rev. Lett 76, 3144–3147 (1996)
Nikolayev, V., Beysens, D. Physics of Fluids 9, 3227–3234 (1997)
Nikolayev, V.S., Beysens, D.: Boiling crisis and nonequilibrium wetting transition. Europhys Lett 47, 345–351 (1999)
Nikolayev, V.S., Chatain, D., Beysens, D., Pichavant, G.: Magnetic gravity compensation. Microgravity Sci. Technol 23, 113–122 (2010)
Nitsche, K., Straub, J.: Die isochore Warmekapazität am kritischen Punkt unter reduzierter Schwerë. Naturwissenschaften 73, 370–373 (1986)
Onuki, A.: Ferrell, R.A.:. Adiabatic heating effect near the gas-liquid critical point. Physica A 164, 245–264 (1990)
Onuki, A., Hao, H., Ferrell, R.A.: Fast adiabatic equilibration in a single-component fluid near the liquid-vapor critical point. Phys. Rev. A 41, 2255–2259 (1990)
Onuki, A.: Phase Transition Dynamics. Cambridge University Press, Cambridge (2002)
Oprisan, A., Oprisan, S.A., Hegseth, J.J., Garrabos, Y., Lecoutre-Chabot, C., Beysens, D.: Universality in early-stage growth of phase-separating domains near the critical point. Phys. Rev. E 77. 051118-1-051118-13 (2008)
Ornstein, L.S., Zernike, F.: Accidental deviations of density and opalescence at the critical point of a single substance. Proc. Acad. Sci. Amsterdam 17, 793–806 (1914)
Pichavant, G., Cariteau, B., Chatain, D., Nikolayev, V., Beysens, D.: Magnetic compensation of gravity: experiments with oxygen. Microgravity Sci. Technol 21 (1), 129–133 (2009)
Pichavant, G., Beysens, D., Chatain, D., Communal, D.: Lorin, C.,Mailfert,A.:Using superconductingmagnet to reproduce 633 quick variations of gravity in liquid oxygen. Microgravity Sci. Technolog 23, 129–133 (2011)
Puglielli, V.G., Ford, N.C.: Turbidity Measurements in SF6 Near Its Critical Point. Phys. Rev. Lett 25, 143–147 (1970)
Siggia, D.: Late stages of spinodal decomposition in binary mixtures. Phys. Rev. A 20, 595–605 (1979)
Stanley, H.E.: Introduction to Phase Transitions and Critical Phenomena. Clarendon Press, Oxford (1971)
Stauffer, D., Ferer, M., Wortis, M.: Universality of second-order phase transitions: The scale factor for the correlation length. Phys. Rev. Lett 29, 345–349 (1972)
Von Smoluchowski, Z.: Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen. Phys. Chem 92, 129–168 (1917)
Wilson, K.G., Kogut, J.: The renormalization group and the ε expansion. Phys. Rep 12, 75–199 (1974)
Wolf, G.H.: The dynamic stabilization of the Rayleigh-Taylor instability and the corresponding dynamic equilibrium. Z. Physik b 227, 291–300 (1969)
Wunenburger, R., Evesque, P., Chabot, C., Chabot, C., Fauve, S., Beysens, D.: Frozen Wave induced by high frequency horizontal vibrations on a CO2 liquid-gas interface near the critical point. Phys. Rev. E 59, 5440–5445 (1999)
Wunenburger, R., Garrabos, Y., Chabot, C., Beysens, D., Hegseth, J.: Thermalization of a two-phase fluid in low gravity : heat transfer from cold to hot. Phys. Rev. Lett 84, 4100–4103 (2000)
Wunenburger, R., Chatain, D., Garrabos, Y., Beysens, D.: Magnetic compensation of gravity forces in (p-) hydrogen near its critical point: application to weightless conditions. Phys. Rev. E 62, 469–476 (2000)
Zappoli, B, Bailly, D, Garrabos, Y, Le Neindre, B, Guenoun, P, Beysens, D.: Anomalous heat transport by the piston effect in supercritical fluids under zero gravity. Phys. Rev. A 41, 2264–2267 (1990)
Zappoli, B: The response of a nearly supercritical pure fluid to a thermal disturbance. Phys. Fluids A 4, 1040–1048 (1992)
Zappoli, B., Carles, P.: The thermo-acoustic nature of the critical speeding up. Eur. J. of Mech. B/Fluids 14, 41–65 (1995)
Zappoli, B., Amiroudine, S., Gauthier, S.: Rayleigh_taylor instability in near-critical pure fluids. Int. J. Thermophys 20, 257_265 (1999)
Zappoli, B., Beysens, D., Garrabos, Y.: Heat Transfer and Related Phenomena in Supercritical Fluids. Springer-Verlag Publishing (2014). in press
Acknowledgments
This review has been made possible thanks to the friendly help and contribution of so many friends that I cannot cite all of them. I would like to particularly thank Y. Garrabos and B. Zappoli with whom I experienced for so many years the excitation of research and discovery. The long-term supports of ESA and CNES, the latter with financial support, are gratefully acknowledged.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Beysens, D. Critical Point in Space: A Quest for Universality. Microgravity Sci. Technol. 26, 201–218 (2014). https://doi.org/10.1007/s12217-014-9373-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12217-014-9373-1
Keywords
- Critical point
- Scaling
- Universality
- Thermalization
- Piston effect
- Vibrations
- Thermo-vibrational
- Weightlessness
- Magnetic levitation