Microgravity Science and Technology

, Volume 25, Issue 4, pp 251–265 | Cite as

Evaporation Rates and Bénard-Marangoni Supercriticality Levels for Liquid Layers Under an Inert Gas Flow

  • H. MachrafiEmail author
  • N. Sadoun
  • A. Rednikov
  • S. Dehaeck
  • P. C. Dauby
  • P. Colinet
Original Article


In this work, we propose an approximate model of evaporation-induced Bénard-Marangoni instabilities in a volatile liquid layer with a free surface along which an inert gas flow is externally imposed. This setting corresponds to the configuration foreseen for the ESA—“EVAPORATION PATTERNS” space experiment, which involves HFE-7100 and nitrogen as working fluids. The approximate model consists in replacing the actual flowing gas layer by an “equivalent” gas at rest, with a thickness that is determined in order to yield comparable global evaporation rates. This allows studying the actual system in terms of an equivalent Pearson’s problem (with a suitably defined wavenumber-dependent Biot number at the free surface), allowing to estimate how far above critical the system is for given control parameters. Among these, a parametric analysis is carried out as a function of the liquid-layer thickness, the flow rate of the gas, its relative humidity at the inlet, and the ambient pressure and temperature.


Evaporation rate Supercriticality Marangoni instability Microgravity experiment 



The authors gratefully acknowledge financial support from ESA and BELSPO PRODEX projects. PC acknowledges financial support of the Fonds de la Recherche Scientifique—FNRS.


  1. 3M: 3M TM Novec TM 7100 Engineered Fluid—Data Sheet. Accessed 1 October 2012
  2. Airliquide: (2012). Accessed 1 October 2012
  3. Bird, R.B., Steward, W.E., Lightfoot, E.N.: Transport Phenomena, Revised 2nd Edn.Wiley, New York (2007)Google Scholar
  4. Chauvet, F., Dehaeck, S., Colinet, P.: Threshold of Bénard-Marangoni instability in drying liquid films. Europhys. Lett. 99(3), 34001 (2012)CrossRefGoogle Scholar
  5. Colinet, P., Legros, J.C., Velarde, M.G.: Nonlinear Dynamics of Surface Tension Driven Instabilities. Wiley, Berlin (2001)CrossRefzbMATHGoogle Scholar
  6. Haut, B., Colinet, P.: Surface-tension-driven instabilities of a pure liquid layer evaporating into an inert gas. J. Colloid Interface Sci. 285, 296–305 (2005)CrossRefGoogle Scholar
  7. Iorio, C.S., Kabov, O.A., Legros, J.C.: Thermal patterns in evaporating liquid. Microgravity Sci. Technol. 19, 27–29 (2007)CrossRefGoogle Scholar
  8. Lindsay, A.L., Bromley, L.A.: Thermal conductivity of gas mixtures. Ind. Eng. Chem. 42(8), 1508–1511 (1950)CrossRefGoogle Scholar
  9. Machrafi, H., Rednikov, A., Colinet, P., Dauby, P.C.: Bénard instabilities in a binary-liquid layer evaporating into an inert gas. J. Colloid Interface Sci. 349, 331–353 (2010)CrossRefGoogle Scholar
  10. Machrafi, H., Rednikov, A., Colinet, P., Dauby, P.C.: Bénard instabilities in a binary-liquid layer evaporating into an inert gas: stability of quasi-stationary and time-dependent reference profiles. Eur. Phys. J. Spec. Top. 192, 71–81 (2011)CrossRefGoogle Scholar
  11. Mancini, H., Maza, D.: Pattern formation without heating in an evaporative convection experiment. Europhys. Lett. 66(6), 812–818 (2004)CrossRefGoogle Scholar
  12. Pearson, J.R.A.: On convection cells induced by surface tension. J. Fluid Mech. 4, 489–500 (1958)CrossRefzbMATHGoogle Scholar
  13. Perry, R.H., Green, D.W.: Perry’s Chemical Engineers’ Handbook, 7th edn. McGraw-Hill, New York (1997)Google Scholar
  14. Schatz, M.F., Neitzel, G.P.: Experiments on thermocapillary instabilities. Annu. Rev. Fluid Mech. 33, 93–127 (2001)CrossRefGoogle Scholar
  15. Slattery, J.C., Bird, R.B.: Calculation of the diffusion coefficient of dilute gases and of the self-diffusion coefficient of dense gases. A.I.Ch.E. J. 4(2), 137–142 (1958)CrossRefGoogle Scholar
  16. Tondon, P.K., Saxena, S.C.: Calculation of thermal conductivity of polar-nonpolar gas mixtures. Appl. Sci. Res. 19(1), 163–170 (1968)CrossRefGoogle Scholar
  17. Wassiljewa, A.: Wärmeleitung in Gasgemischen. I. Z. Physik. 5, 737–742 (1904)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • H. Machrafi
    • 1
    Email author
  • N. Sadoun
    • 2
    • 3
  • A. Rednikov
    • 2
  • S. Dehaeck
    • 2
  • P. C. Dauby
    • 1
  • P. Colinet
    • 2
  1. 1.Thermodynamique des Phénomènes Irréversibles, Institut de Physique B5aUniversité de LiègeLiège 1Belgium
  2. 2.TIPs – Fluid PhysicsUniversité Libre de BruxellesBruxellesBelgium
  3. 3.Laboratoire de Mècanique des Fluides Thèorique et Appliquèe, Facultè de PhysiqueUSTHBAlgerAlgeria

Personalised recommendations