Skip to main content
Log in

Nonlinear Convective Oscillations in Two-Layer Systems under the Action of the Horizontal Component of the Temperature Gradient

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

The influence of the horizontal component of the temperature gradient on nonlinear oscillatory convective flows, developed under the joint action of buoyant and thermocapillary effects in the 47 v2 silicone oil - water system, is investigated. The layers of equal thicknesses are considered. Transitions between nonlinear regimes of convection, have been studied. It is shown that under the action of the horizontal component of the temperature gradient, the asymmetric oscillatory flow takes place in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Busse, F.H.: On the aspect ratios of two - layer mantle convection. Phys. Earth Planet. Inter. 24, 320 (1981)

    Article  Google Scholar 

  • Colinet, P., Legros, J.C.: On the Hopf bifurcation occuring in the two-layer Rayleigh-Bénard convective instability. Phys. Fluids 6, 2631 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Davis, S.H.: Thermocapillary instabilities. Ann. Rev. Fluid Mech. 19, 403 (1987)

    Article  MATH  Google Scholar 

  • Degen, M.M., Colovas, P.W., Andereck, C.D.: Time-dependent patterns in the two-layer Rayleigh-Bénard system. Phys. Rev. E. 57, 6647 (1998)

    Article  Google Scholar 

  • Gershuni, G.Z., Zhukhovitsky, E.M.: Convective stability of incompressible fluid. Keter, Jerusalem (1976)

    Google Scholar 

  • Gershuni, G.Z., Zhukhovitsky, E.M.: On monotonic and oscillatory instability of a two-layer immiscible fluids system heated from below. Sov. Phys. Dokl. 27, 531 (1982)

    MATH  Google Scholar 

  • Juel, A., Burgess, J.M., McCormick, W.D., Swift, J.B., Swinney, H.L.: Surface-tension-driven convection patterns in two liquid layers. Phys. D. 143, 169 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Madruga, S., Perez-Garcia, C., Lebon, G.: Convective instabilities in two superposed horizontal liquid layers heated laterally. Phys. Rev. E. 68, 041607 (2003)

    Article  Google Scholar 

  • Madruga, S., Perez-Garcia, C., Lebon, G.: Instabilities in two-liquid layers subject to a horizontal temperature gradient. Theoret. Comput. Fluid Dyn. 18, 277 (2004)

    Article  MATH  Google Scholar 

  • Nepomnyashchy, A.A., Simanovskii, I.B.: Thermocapillary and thermogravitational convection in a two-layer system with a distorted interface. Fluid Dyn. 19, 494 (1984)

    Article  Google Scholar 

  • Nepomnyashchy, A.A., Simanovskii, I.B.: Convective flows in a two-layer system with a temperature gradient along the interface. Phys. Fluids 18, 032105 (2006)

    Article  Google Scholar 

  • Nepomnyashchy, A.A., Simanovskii, I.B., Braverman, L.M.: Stability of thermocapillary flows with inclined temperature gradient. J. Fluid Mech. 442, 141 (2001)

    Article  MATH  Google Scholar 

  • Nepomnyashchy, A., Simanovskii, I., Legros, J.-C., Second Edition: Interfacial convection in multilayer systems. Springer, New York (2012)

    Book  MATH  Google Scholar 

  • Pearson, J.R.A.: On convection cells induced by surface tension. J. Fluid. Mech. 4, 401 (1958)

    Article  Google Scholar 

  • Renardy, Y., Renardy, M., Fujimura, K.: Takens-Bogdanov bifurcation on the hexagonal lattice for double-layer convection. Phys. D. 129, 171 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Shklyaev, O.E., Nepomnyashchy, A.A.: Thermocapillary flows under an inclined temperature gradient. J. Fluid Mech. 504, 99 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Simanovskii, I.B.: Finite - amplitude convection in a two - layer system. Fluid Dyn. 14, 637 (1979)

    Article  Google Scholar 

  • Simanovskii, I.B., Nepomnyashchy, A.A.: Convective instabilities in systems with interface. Gordon and Breach, London (1993)

    MATH  Google Scholar 

  • Simanovskii, I.B., Nepomnyashchy, A.A.: Nonlinear development of oscillatory instability in a two-layer system under the combined action of buoyancy and thermocapillary effect. J. Fluid Mech. 555, 177 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Ueno, I., Kurosawa, T., Kawamura, H.: Thermocapillary convection in thin liquid layer with temperature gradient inclined to free surface, Heat Transfer 2002. Proceeding 12th International Heat Transfer Conference, pp. 129. Grenoble, France (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilya B. Simanovskii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simanovskii, I.B., Viviani, A., Dubois, F. et al. Nonlinear Convective Oscillations in Two-Layer Systems under the Action of the Horizontal Component of the Temperature Gradient. Microgravity Sci. Technol. 25, 141–151 (2013). https://doi.org/10.1007/s12217-013-9339-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-013-9339-8

Keywords

Navigation